
Rapid Analysis of Network Connectivity
Scott Freitas

Arizona State University
Tempe, Arizona

scott.freitas@asu.edu

Hanghang Tong
Arizona State University

Tempe, Arizona
hanghang.tong@asu.edu

Nan Cao
Tongji University
Shanghai, China
nan.cao@nyu.edu

Yinglong Xia
Huawei

Santa Clara, California
yinglong.xia@huawei.com

ABSTRACT
This research focuses on accelerating the computational time of two
base network algorithms (k-simple shortest paths and minimum
spanning tree for a subset of nodes)—cornerstones behind a variety
of network connectivity mining tasks—with the goal of rapidly find-
ing network pathways and trees using a set of user-specific query
nodes. To facilitate this process we utilize: (1) multi-threaded algo-
rithm variations, (2) network re-use for subsequent queries and (3)
a novel algorithm, Key Neighboring Vertices (KNV), to reduce the
network search space. The proposed KNV algorithm serves a dual
purpose: (a) to reduce the computation time for algorithmic analysis
and (b) to identify key vertices in the network (context). Empirical re-
sults indicate this combination of techniques significantly improves
the baseline performance of both algorithms. We have also devel-
oped a web platform utilizing the proposed network algorithms to
enable researchers and practitioners to both visualize and interact
with their datasets (PathFinder: http://www.path-finder.io).

KEYWORDS
k-simple shortest paths,MST, search space reduction,multi-threading,
parallel processing, network visualization, seed nodes

1 INTRODUCTION
Motivation. With the advent of the big data era and the emergence
of network science, large-scale networks are appearing across many
disciplines, from medicine and epidemiology to advertising and
marketing. As a result, an exponential amount of network data is
being generated at an unprecedented rate. The challenge before
us, given limited computational resources, is to translate this large
network data into meaningful knowledge.

Problem. How can we rapidly explore, analyze and visualize a
set of user-specific query nodes in relation to a dataset?We envision
that tree, pathway and context are the three key components to
answer this question. Formally, given a graph G = (V ,E) and a set

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’17 , November 6–10, 2017, Singapore, Singapore
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
https://doi.org/10.1145/3132847.3133170

of user-specific query nodes Q , we seek to find (1) the relationship
between each query node in Q (i.e. tree detection), (2) a subset of
paths R ⊂ G such that R contains only vertices and edges that
provide key path information between different query nodes in Q
(i.e. pathway detection) and (3) a subset of important vertices, C
and edges, S , such that C ⊂ V and S ⊂ E (i.e. context detection).

Related Work. There has been significant research related to
our proposed algorithms. In addition, the concept of user-specific
query nodes (seed nodes) has been an active research topic. For
example, Staudt et. al. used user-specific query nodes for community
detection via “selSCAN" [2] and Akoglu et. al. used them to find
connection pathways [1].

K-Simple Shortest Paths (pathway): A theoretical analysis has
been laid out by Ruppert [4], along with the theoretical and experi-
mental work by Guerriero et. al using a shared memory model [5].
More recently, Singh et. al. used GPUs along with CUDA to paral-
lelize the algorithm, resulting in impressive speedup [6]. In addition,
two representative works for connection subgraph identification
(i.e. pathway detection) can be seen in [1] and [3].

Shortest Paths MST (tree): Related work towards creating a mini-
mum spanning tree for a susbset of nodes has been done by Cenek
et. al. Instead of creating a shortest paths distance matrix, they
proposed to insert the shortest paths into the tree dynamically [8].

Key Neighboring Vertices (context): Sulieman et. al. proposed a
semantic social breadth first search algorithm which takes the top
N vertices with the highest centrality degree and attempts to find
the nearby influential players [7].

Contributions. Our main contributions are three-fold: (1) the
development of two multi-threaded algorithms: k-simple shortest
paths (KSSP) and minimum spanning tree for a subset of nodes
(Shortest Paths MST); (2) the creation of a novel algorithm, Key
Neighboring Vertices (KNV), for reducing network search space
and identifying key vertices; (3) the development of a web plat-
form, utilizing these algorithms, for researchers and practitioners
to upload their own network data for analysis and visualization.

1. K-Simple Shortest Paths (pathway): Our approach to the k-
simple shortest path algorithm offers three new features: (a) instead
of creating a multi-threaded single source shortest path algorithm
[4][5][6], we parallelize each single source shortest path compu-
tation required to find a path in k (for details see section 3.1); (b)
we pre-process the network data to reduce the search space using
the KNV algorithm; (c) the generated pathways and surrounding
context nodes can be re-queried to find additional paths or trees.

Demonstration CIKM’17, November 6-10, 2017, Singapore

2463

http://www.path-finder.io
https://doi.org/10.1145/3132847.3133170

Shortest Paths MST (tree): Our approach to solving the minimum
spanning tree for a subset of nodes (Shortest Paths MST) is cen-
tered around (a) parallelizing the shortest path computations to run
simultaneously; (b) pre-processing the network data to reduce the
search space of the algorithm; (c) re-querying the generated tree
and surrounding context nodes to find additional trees or paths.

2. Key Neighboring Vertices (context): Our approach is similar to
Sulieman et. al., but with three key differences. (a) Instead of explor-
ing the network based on the top N vertices with highest degree
centrality, we seed the map with a set of user-specific query nodes;
(b) we propose using above average network degree centrality as
the metric for including nearby neighboring vertices for further
exploration in the search list; (c) we allow additional parameters
that let the user control the exploration process.

3. Platform: We have developed PathFinder, a web platform to
assist users in mining network connectivity from large networks.
PathFinder begins by taking an input network uploaded by the
user or selection from a pre-loaded dataset. Depending on the user’s
expertise with the program there are two sets of controls: basic
and advanced. The basic controls allow the user to start without
an understanding of the algorithms, while the advanced controls
allow the user to fine-tune their queries and obtain information
that may not be available with a basic search. Visualizations are
generated using vis.js and GraphViz. A video demo of the platform
is available at: https://youtu.be/PxQVd-6mKUw.

2 PLATFORM FUNCTIONALITY
Each part of Figure 1 highlights some of the platforms core function-
ality. Figure 1(1) shows a sample visualization using the pathway
detection algorithm on the DBLP network. Figure 1(2) allows the
user to enter the algorithm parameters and select a network for
analysis. Figure 1(3) allows the user to enter nodes and edges to
be removed from the graph search, select whether or not to re-use
the current graph results for further analysis and change the con-
figuration of network style parameters, including: node-edge color
scheme and node size. Figure 1(4) is a zoomed in portion of Figure
1(1). The red nodes represent the start and end query vertices, or-
ange for intermediate path vertices, blue for one hop away critical
vertices and purple for two hop away critical vertices. The blue and
purple vertices surrounding the the path vertices are determined
by the KNV algorithm.
Engaging the Audience. We expect that our demo will primar-
ily attract two audiences, (1) practitioners who are interested in
exploring the connectivity between key nodes in large networks,
and (2) information management and data mining researchers who
develop new algorithms and tools.

3 TECHNICAL DETAILS
All algorithms perform on an undirected, unweighted, adjacency
list graph representation,G = (V ,E). Nonetheless, we note that the
proposed platform is flexible to admit alternative algorithms and
graph types with mild changes.

3.1 Pathway Detection
Problem definition. Given two pre-marked vertices, x ,y ϵ V from
the graph G = (V ,E), this algorithm will find k-simple shortest
paths from x to y.

Algorithm description. We adopt the k-simple shortest paths
threaded and search reduced algorithm (Algorithm 1) to detect key
pathways that connect the query nodes, which can be viewed in 7
steps:

(1) Run the Key Neighboring Vertices (KNV) algorithm to reduce
the search space of the graph using the start and end vertices.

(2) Find the first single source shortest path between vertex x
and vertex y.

(3) Run the KNV algorithm a second time on the original graph
with all the vertices from the shortest path.

(4) For each edge in the current shortest path: temporarily re-
move the given edge and run a single source shortest path
algorithm. Each of the shortest paths run in parallel.

(5) Determine which of these paths produced the subsequent
shortest path. Permanently delete the edge that formed the
shortest path from the adjacency list.

(6) Repeat Steps 4-5 until k shortest paths have been found or
there are no more identifiable paths.

(7) Optional: Re-query the generated network for additional
paths, paths between different vertices or for a tree using
Shortest Paths MST.

Algorithm 1: Pathway Detection: K-Simple Shortest Paths
Threaded and Search Reduced
Input: Graph A = (V, E); sv, ev ϵ V
Output: Array of paths: sPaths[]
Initialization: sPaths[], pHolder[], eHolder[]; cPath := 0
Graph B = Key_Neighboring_Vertices(A, sv, ev)
sPaths[cPath] = Dijkstra(sv, ev, B)
cPath++
Graph B = Key_Neighboring_Vertices(A, sPaths)
while cPath < numPaths do

pIndex := 0
for each edge e ϵ sPaths[cPath-1] do

Graph C = B
C.removeEdge(e)
eHolder[pIndex] = e
pHolder[pIndex] = new_thread(Dijkstra(sv, ev, C))
pIndex++

shortestPaths[cPath] = pHolder.getMinPath
B.removeEdge(eHolder[cPath])
cPath++

3.2 Tree Detection
Problem definition.Given two or more pre-marked vertices, 2...x
ϵ V from the graph G = (V ,E), this algorithm will find a MST that
is constructed from a combination of single source shortest paths.
Algorithm description. We adopt the Shortest Paths Minimum
Spanning Tree algorithm (Algorithm 2) to determine the relation-
ship between the user-specified query nodes. This can be viewed
in 4 steps:

(1) Each pre-marked node, v , will run a single source shortest
path algorithm against every other pre-marked vertex. The
single source shortest path algorithms run in parallel.

(2) Sort the resulting paths in ascending order of path length.
(3) RunKruskal’s algorithm to determinewhich of these shortest

paths form the MST.

Demonstration CIKM’17, November 6-10, 2017, Singapore

2464

https://youtu.be/PxQVd-6mKUw

Figure 1: An illustrative example of our platform to find the key pathways. Start and end vertices are in red.
(4) Optional: Re-query the generated network with different

vertices or find paths using the pathway detection algorithm.

Algorithm 2: Tree Detection: Shortest Paths MST
Input: Graph A = (V, E); Array of integers: vertices[]
Output: Array of paths: sPaths[]
Initialization: struct PathInfo { Vertex v1, v2 }, PathInfo paths[],
Two integers: pathCount, pathsFound := 0
for each unique pair of vertices p1, p2 ϵ vertices do

paths[pathCount].v1 = p1, paths[pathCount].v2 = p2
pathCount++

Graph B = Key_Neighboring_Vertices(A, vertices)
for i := 0 to pathCount do

sPaths[pathsFound] = new_thread(Dijkstra(B, paths[i]))
pathsFound++

Sort_Ascending_Order(sPaths)
Kruskal’s Algorithm(sPaths)

3.3 Context & Speed-up
For both tree and pathway detection, we propose an efficient algo-
rithm to detect key neighboring vertices to reduce the search space
using a combination of three techniques to identify critical nodes:
(1) vertex centrality, (2) edge connection to a pre-marked node and
(3) breadth first search. This allows us to create a reduced graph
R = (V ,E), that is a subset of G,R ⊂ G. Through this process we
implicitly assume that vertices with high centrality are key hubs in
the graph and are therefore important ‘players’ in the network.

The proposed key neighboring vertices algorithm can be viewed
in 4 steps:

(1) Determine if the current vertex has an edge connection to
one of the ‘key’ vertices and has above average vertex cen-
trality. If both conditions are met, place the current vertex
into a bin of that key vertex.

(2) Sort each bin in descending order of vertex centrality.
(3) From each bin, take the top ‘x ’ neighboring nodes as impor-

tant vertices at that depth level and add them to the reduced
adjacency list.

(4) From each bin, a percentage of the top ‘x ’ nodes will become
‘key’ vertices and recursively undergo the process until the
specified depth level is reached.

Algorithm 3: Context & Speed-up: Key Neighboring Vertices
Input: Graph A = (V, E); Array of integers: vertices[]; Six

integers: cDepth, depth, avgCentrality, numVertex,
numVerticesNextIter, numVerticesCritical

Output: Graph R = (V, E)
Initialization: bins[][]
for i := 0 to A.size do

if A[i].centrality > avgCentrality then
for k := 0 to vertices.size do

if vertices[k] ∩ A[i] then
bins[k] += i

for each array, a, in bins do
Sort_Descending_Order_Vertex_Centrality(a);

for i := 0 to vertices.size do
for k := 0 to bins[i].size and k < numVertex do

if !vertices[i] ∩ R[bins[i].at(k)] then
R.addEdge(vertices[i], bins[i].at(k))

if cDepth < depth then
numVertex = numVerticesNextIter
vertices = new vertices[]
cDepth++
for each array, a, in bins do

for i := 0 to a.size and i < numVerticesCritical do
vertices.insert(a[i]])

key_Neighboring_Vertices(vertices, numVertex, cDepth)

3.4 Empirical Evaluation
Weused the DBLP co-authorship and the LiveJournal social network
from the Stanford SNAP network to gather empirical data on the
platform. The two measures we aim to quantify are speed and
accuracy. Since the Shortest Paths MST and K-Simple Shortest Paths
algorithm utilize the same search space reduction algorithm and
multithreading techniques, we use the KSSP algorithm to represent
the Shortest Paths MST in terms of accuracy and run time. All data
was collected locally and does not account for any additional run
time caused by using the web-platform.

Demonstration CIKM’17, November 6-10, 2017, Singapore

2465

To compare the accuracy and run time, we ran three variations
of the K-Simple Shortest Path algorithm (KSSP). The first variation
(v.1) contained only the core KSSP algorithm with no search space
reduction or multithreading. The second variation (v.2) ran the
KSSP algorithm with multithreading (KSSPT). The third variation
(v.3) ran the KSSP algorithm with multithreading and the search
space reduction algorithm (KSSPR). The run time and accuracy
of the three KSSP variations can be seen in Figure 2 and Figure
3-4 respectively. It should be noted that (v.1) and (v.2) of the KSSP
algorithm will always find the shortest paths available, while the
same guarantee cannot be extended to (v.3). The reasoning behind
the possible suboptimal path(s) for (v.3) is due to the nature of the
search space reduction algorithm applied to the graph. The KNV
algorithm uses a tradeoff between accuracy and run time, which
can be varied depending on the parameters. In trials for Figure 2 we
applied parameters to the KNV algorithm that retained accuracy at
the cost of speed. However, even with this additional ‘cost’, trial one
results show (v.3) over 2.5x faster than (v.1) and 1.7x faster than
(v.2) with no loss of accuracy with respect to the full network
(last data point). It can be seen in Figure 4 that the run time and
path length for the variations is dependent upon the start and end
vertices.

Figure 2: Start Vertex: 61, End Vertex: 70591, # of paths: 6. No data
for KSSPR on first two data points due to selected KNV parameters.

Figure 3: Data points represent 20%-100% of the Live-Journal net-
work in 1/5th intervals. KSSPR: Start Vertex: 35521, End Vertex:
286345, # of paths: 8. MST Shortest Paths: Vertices: 0, 58, 9558, 34343.

In order to better access the abilities of the platform we ran both
the KSSPR and Shortest Paths MST algorithms on the LiveJournal
network. To put it in perspective, the LiveJournal network has ap-
proximately 38.5 million edges and vertices compared to the DBLP

Figure 4: Each data point represents # of paths found: 2-14 in in-
tervals of 4. Trial 1: Start Vertex: 35521, End Vertex: 286345. Trial 2:
Start Vertex: 9790, End Vertex: 26073.

network of 1.3 million. In figure 3, the labels KSSPM and MSTM
represent re-query results compared to Algorithm 1 and 2 with no
re-query. Comparing the full network (5th interval) run time for
KSSPR vs KSSPM we see an 5.3x speed-up and a 5.6x speed-up
for the MSTM vs MST. It should be noted that (a) parameters were
held constant when re-querying the network and that only informa-
tion generated from the previous run is analyzed when re-querying
and (b) shorter paths can be found when re-querying the graph
since it’s saved based on visualization parameters not search space
reduction.

4 CONCLUSIONS
The goal of this work is to rapidly analyze network connectiv-
ity. We believe the computational speedup obtained will be of in-
terest to information management and data mining researchers.
In addition, the web platform PathFinder allows users to quickly
and intuitively determine network connectivity between a set of
user-specific query nodes. An operational prototype is online: http:
//path-finder.io and source code will be made publicly available by
the conference date.

5 ACKNOWLEDGEMENTS
This work is partially supported by the National Science Founda-
tion under Grant No. IIS-1651203, IIS-1715385 and IIS-1743040, by
DTRA under the grant number HDTRA1-16-0017, by Army Re-
search Office under the contract number W911NF-16-1-0168, and
gifts from Huawei and Baidu.

REFERENCES
[1] L. Akoglu, D. H. Chau, J. Vreeken, N. Tatti, H. Tong, and C. Faloutsos. Mining

Connection Pathways for Marked Nodes in Large Graphs. SDM 2013.
[2] C. L. Staudt, Y. Marrakchi, and H. Meyerhenke. Detecting Communities around

Seed Nodes in Complex Networks. IEEE Big Data 2014.
[3] C. Faloutsos, K. S. Mccurley, and A. Tomkins. Fast Discovery of Connection Sub-

graphs. KDD 2004.
[4] E. Ruppert. 2000. Finding the k Shortest Paths in Parallel. Algorithmica 28, 2 (2000),

242-254.
[5] F. Guerriero, R. Musmanno. 2000. Parallel Asynchronous Algorithms for the K

Shortest Paths Problem. JOTA 2000.
[6] A. Singh, D. Singh. 2015. Implementation of K-shortest Path Algorithm in GPU

Using CUDA. Procedia Computer Science 48, 5-13.
[7] D. Sulieman, M. Malek, H. Kadima, D. Laurent. Semantic social breadth-first search

and depth-first search recommendation algorithms.
[8] P. Cenek, M. Hrcka. Minimum Spanning Tree on A Subset of Nodes.

Demonstration CIKM’17, November 6-10, 2017, Singapore

2466

http://path-finder.io
http://path-finder.io

	Abstract
	1 Introduction
	2 Platform Functionality
	3 Technical Details
	3.1 Pathway Detection
	3.2 Tree Detection
	3.3 Context & Speed-up
	3.4 Empirical Evaluation

	4 Conclusions
	5 Acknowledgements
	References

