Graph Convolutional Networks: Algorithms,
Applications and Open Challenges

Si Zhang', Hanghang Tong®, Jiejun Xu*, and Ross Maciejewskif

T Arizona State University, {szhan172, hanghang.tong, rmacieje}@asu.edu;
YHRL Laboratories, jxu@hrl.com

Abstract. Graph-structured data naturally appear in numerous appli-
cation domains, ranging from social analysis, bioinformatics to computer
vision. The unique capability of graphs enables capturing the structural
relations among data, and thus allows to harvest more insights compared
to analyzing data in isolation. However, graph mining is a challenging
task due to the underlying complex and diverse connectivity patterns. A
potential solution is to learn the representation of a graph in a low-
dimensional Euclidean space via embedding techniques that preserve
the graph properties. Although tremendous efforts have been made to
address the graph representation learning problem, many of them still
suffer from their shallow learning mechanisms. On the other hand, deep
learning models on graphs have recently emerged in both machine learn-
ing and data mining areas and demonstrated superior performance for
various problems. In this survey, we conduct a comprehensive review
specifically on the emerging field of graph convolutional networks, which
is one of the most prominent graph deep learning models. We first in-
troduce two taxonomies to group the existing works based on the types
of convolutions and the areas of applications, then highlight some graph
convolutional network models in details. Finally, we present several chal-
lenges in this area and discuss potential directions for future research.

Keywords: Graph convolutional networks - Spectral - Spatial.

1 Introduction

Graphs naturally arise in many real-world applications, including social analy-
sis [3], fraud detection [1,45], traffic prediction [28], computer vision [31] and
many more. By representing the data as graphs, the structural information can
be encoded to model the relations among entities, and furnish more promising
insights underlying the data. For example, in a transportation network, nodes
are often the sensors and edges represent the spatial proximity among sensors.
In addition to the temporal information provided by the sensors themselves,
the graph structure modeled by the spatial correlations leads to a prominent
improvement in the traffic prediction problem [28]. Moreover, by modeling the
transactions among people as a graph, the complex transaction patterns can be
mined for synthetic identity detection [45] and money laundering detection [46].

2 Si Zhang', Hanghang Tong', Jiejun Xu*, and Ross Maciejewski'

However, the complex structure of graphs [5] often hampers the capability of
gaining the true insights underlying the graphs. Such complexity, for example,
resides in the non-Euclidean nature of the graph-structured data. A potential
solution to deal with the complex patterns is to learn the graph representa-
tions in a low-dimensional Euclidean space via embedding techniques, including
the traditional graph embedding methods [37, 34, 4] and the recent network em-
bedding methods [33,21]. Once the low-dimensional representations are learned,
many graph-related problems can be easily done, such as the classic node clas-
sification and link prediction [21]. There exist many thorough reviews on both
traditional graph embedding and recent network embedding methods. For exam-
ple, [40] reviews several well-established traditional graph embedding methods
and discusses the general framework for graph dimensionality reduction. Hamil-
ton et al. review the general graph representation learning methods, including
node embedding and subgraph embedding [23]. Furthermore, [11] discusses the
differences between the traditional graph embedding and the recent network em-
bedding methods. One notable difference is that the recent network embedding
is more suitable for the task-specific network inference. Other existing literature
reviews on network embedding include [20, 8].

Despite some successes of these embedding methods, many of them suffer
from the limitations of the shallow learning mechanisms [33,21] and might fail
to discover the more complex patterns behind the graphs. Deep learning models,
on the other hand, have been demonstrated their power in many applications. For
example, convolution neural networks (CNN) achieve a promising performance
in many computer vision [19] and natural language processing [18] applications.
In particular, due to the grid-like nature of images, the convolution layers in
CNN enable to learn different trainable localized filters which scan every pixel
in the images, combining with the surrounding pixels. The basic components are
the convolution and pooling operators, as well as the trainable localized filters.

However, the non-Euclidean characteristic of graphs (e.g., the irregular struc-
ture) makes the graph convolutions and graph filtering not as well-defined as on
images. In the past decades, researchers have been working on the graph signal
operations, such as graph filtering, graph wavelets, etc. Shuman et al. give a
comprehensive overview of graph signal processing, including the common oper-
ations on graphs [36]. To be brief, spectral graph convolutions are defined in the
graph Fourier domain, which is considered as an analogy of 1-D signal Fourier
transform. Graph filtering can be defined in the spectral and vertex domains.
The emergence of these operators open a door to graph convolutional networks.
Note that in the past few years, many other graph deep learning models have
been proposed, including (but are not limited to): (1) graph auto-encoder [26],
(2) graph generative adversarial model [14,44], (3) graph attention model [39,
27], (4) graph recurrent neural networks [43]. But in this survey, we focus specif-
ically on reviewing the existing literature of the graph convolutional networks.
The main contributions of this survey are summarized as following:

1. We introduce two taxonomies to group the existing graph convolutional net-
work models by the types of filtering and the areas of applications.

Title Suppressed Due to Excessive Length 3

2. We motivate each taxonomy by surveying and discussing the state-of-the-art
graph convolutional network models.

3. We discuss the challenges of the current models that need to be addressed
and highlight some promising directions for the future work.

The rest of the paper is organized as follows. We start by summarizing the
notations and introducing some preliminaries of graph convolutional networks
in Section 2. Then in Section 3 and Section 4, we categorize the existing models
into the spectral based methods and the spatial based methods by the types
of graph filtering with some detailed examples. Section 5 presents the methods
from a view of applications. In Section 6, we conclude our survey, discuss some
of the challenges and provide some directions for the future work.

2 Notations and Preliminary

In this section, we present the notations and some preliminaries for the graph
convolutional networks. In general, we use bold uppercase letters for matrices,
bold lowercase letters for vectors, and lowercase letters for scalars. For matrix
indexing, we use A(i,7) to denote the entry at the intersection of the i-th row
and j-th column. We denote the transpose of a matrix A as AT,

Graphs and Graph Signals

In this survey, we are interested in the graph convolutional network models
on an undirected connected graph G = {V,&, A}, which consists of a set of
nodes V with |V| = n, a set of edges £ with || = m and the adjacency matrix
A. If there is an edge between node i and node j, the entry A(4,j) denotes the
weight of the edge; otherwise, A(i,j) = 0. For unweighted graphs, we simply
set A(i,7) = 1. We denote the degree matrix of A as a diagonal matrix D
where D(i,i) = >7_; A(i,7). Then the Laplacian matrix of A is denoted as
L = D — A. The corresponding symmetrically normalized Laplacian matrix is
L=I-D2AD" = where Lis an identity matrix.

A graph signal defined on the nodes is represented as a vector x € R"™ where
x(7) is the signal value on the node ¢ [36]. Node attributes, for instance, can be
considered as the graph signals. Denote X € R"*? as the node attribute matrix
of an attributed graph, then the columns of X are the d signals of the graph.
Graph Fourier Transform

It is well-known that the classic Fourier transform of an 1-D signal f is
computed by f(&) = (f,e*™ &) where ¢ is the frequency of f in the spectral
domain and the complex exponential is the eigenfunction of the Laplace operator.
Analogously, the graph Laplacian matrix L is the Laplace operator defined on a
graph, and hence an eigenvector of L associated with its corresponding eigenvalue
is an analog to the complex exponential at a certain frequency. Note that the
symmetrically normalized Laplacian matrix L and the random-walk transition
matrix can be also used as the graph Laplace operator. In particular, denote
the eigenvalue decomposition of L as L = UAUT where the I-th column of U
is the eigenvector u; and A(l,1) is the corresponding eigenvalue \;, then we can
compute the Fourier transform of a graph s}lgnal X as

x(N) = (xw) =D x(i)uj (i) (1)

=1

4 Si Zhang', Hanghang Tong', Jiejun Xu*, and Ross Maciejewski'

The above equation represents in the spectral domain a graph signal defined in
the vertex domain. Then the inverse graph Fourier transform can be written as
n

x(i) = Y x(\)w(i) (2)
=1

Graph Filtering

Graph filtering is a localized operation on graph signals. Analogous to the
classic signal filtering in the time or spectral domain, one can localize a graph
signal in its vertex domain or spectral domain as well.
(1) Frequency filtering: Recall that the frequency filtering of a classic signal is
often represented as the convolution with the filter signal in the time domain.
However, due to the irregular structure of the graphs (e.g., different nodes having
different numbers of neighbors), graph convolution in the vertex domain is not as
straightforward as the classic signal convolution in the time domain. Note that
for classic signals, the convolution in the time domain is equivalent to the inverse
Fourier transform of the multiplication between the spectral representations of
two signals. Therefore, the spectral graph convolution is defined analogously as

n

(x#g y) (1) = > %A)F)w(i) (3)
=1
Note that x(A\;)y()\;) indicates the filtering in the spectral domain. Thus, the
frequency filtering of a signal x on graph G with a filter y is exactly same as Eq.
(3) and is further re-written as
y(M) 0
Xout =X *gy = U UTx (4)
0 y(An)
(2) Vertex filtering: The graph filtering of a signal x in the vertex domain is
generally defined as a linear combination of the signal components in the nodes
neighborhood. Mathematically, the vertex filtering of a signal x at node ¢ is
Xout () = wix (i) + Y wi;x(j) (5)
JEN(4,K)
where N (i, K) represents the K-hop neighborhood of node i in the graph and
the parameters {w; ;} are the weights used for the combination. It can be shown
that by using a K-polynomial filter, the frequency filtering can be interpreted
from the vertex filtering perspective [36].

3 Spectral Graph Convolutional Networks

In this section and the subsequent Section 4, we categorize the graph convo-
lutional neural networks into the spectral based methods and the spatial based
methods respectively. We consider the spectral based methods to be those meth-
ods that start with constructing the frequency filtering.

The first notable spectral based graph convolutional network is proposed
by Bruna et al. [7]. Motivated by the classic CNN, this deep model on graphs
contains several spectral convolutional layers that take a vector X,, of size n x d),
as the input feature map and output a feature map X, of size n x dp41 by:

Title Suppressed Due to Excessive Length 5

(67)(1) 0
Xpi1(:5) =0 ZV VIX, (i) |, Vi=1, ,dpi

0 (67)(n)

(6)
where X,,(:,7) (Xp41(:,) is the i-th (j-th) dimension of the input (output) fea-
ture map respectively, 0{ denotes a vector of learnable parameters of the filter
6. Each column of V is the eigenvector of L and o(-) is the activation func-
tion. However, there are several issues with this convolutional structure. First,
the eigenvector matrix V requires the explicit computation of the eigenvalue
decomposition of the graph Laplacian matrix, and hence suffers from the O(n?)
time complexity which is impractical for large-scale graphs. Second, though the
eigenvectors can be pre-computed, the time complexity of Eq. (6) is still O(n?).
Third, there are O(n) parameters to be learned in each layer. Besides, these
non-parametric filters are not localized in the vertex domain. To overcome the
limitations, the authors also propose to use a rank-r approximation of eigenvalue
decomposition. To be specific, they use the first r eigenvectors of V that carry
the most smooth geometry of the graph and consequently reduce the number of
parameters of each filter to O(1) [7]. Moreover, if the graph contains the clus-
tering structure that can be explored via such a rank-r factorization, the filters
are potentially localized. However, it still requires O(n?) time complexity.

To address these limitations, Defferrard et al. propose to use K-polynomial
filters in the convolutional layers for localization [12]. Such a K-polynomial fil-
ter is represented by y(\;) = 215:1 0xAF. As mentioned in Section 2, the K-
polynomial filters achieve a good localization by integrating the node features
within the K hop neighborhood [36], and the number of the trainable parame-
ters decreases to O(K) = O(1). In addition, to further reduce the computational
complexity, the Chebyshev polynomial approximation [24] is used to compute the
spectral graph convolution. Mathematically, the Chebyshev polynomial T (x) of
order k can be recursively computed by Ty(z) = 22T)— 1() — Ti—o(xz) with
To = 1, Ti(x) = z. They normalize the filters by \; =
scaled eigenvalues lie within [—1,1] [12]. As a result, the convolutlon layer is

dp K—1
Xp—i-l

| |
Q

k‘+ 1 Tk(L)X (:,7:) 5 VJ = 1, te ,dp+1 (7)
=1 k:O

~.

where 0{ is a K-dimensional parameter vector for the i-th column of input
feature map and the j-th column of output feature map. The authors also design
a max pooling operation [12] with the multilevel clustering method Graclus [13]
which is quite efficient to uncover the hierarchical structure of the graphs.

As a special variant, the graph convolutional network proposed by Kipf et al.
(named as GCN) aims at the semi-supervised node classification task on graphs
[25]. In this model, the authors truncate the Chebyshev polynomial to first-order
(i.e., K = 2 in Eq. (7)) and specifically set (0)!(1) = —(8)7(2) = 67. Besides,

6 Si Zhang', Hanghang Tong', Jiejun Xu*, and Ross Maciejewski'

since tNhe eigenvalues of L are within [0, 2], relaxing Amax = 2 still guarantees
—1< N <1, Vi=1,--- ,n. This leads to the simplified convolution layer as

X,11 =0 (D1AD#X,0,) ©)

where A = I+ D 2AD"2 and D is the diagonal degree matrix of A, ®, is
a dpy1 X d, parameter matrix. Besides, Eq. (8) has a close relationship with
the Weisfeiler-Lehman isomorphism test [35]. The last layer outputs the node
representations. A softmax classifier is then added after the last spectral convo-
lutional layer and the objective is to minimize the cross-entropy error over the
labeled nodes. The objective function is then minimized in a gradient descent
manner. However, the training process could be costly (in terms of memory) for
large-scale graphs. Moreover, the transduction of GCN interferes with the gen-
eralization, making the learning of representations of the unseen nodes in the
same graph and the nodes in an entirely different graph more difficult [25].

To address the issues of GCN [25], FastGCN [10] improves the original GCN
model by viewing the spectral graph convolution as an integral of embedding
functions under some probability measure. It first assumes the input graph G
is an induced subgraph of a possibly infinite graph G’ such that the nodes V of
G are i.i.d. samples of the nodes of G’ (denoted as V') under some probability
measure P. This way, the original convolution layer represented by Eq. (8) can
be illustrated by an embedding function of independent vertices. Denote the
embedding function at the p-th layer as x,,, then we have

xn(0) =0 ([A, e,aw))

where u, v are some independent nodes. Now, Eq. (9) can be approximated by
Monte Carlo sampling. Denote some i.i.d. samples u}, - - ,ufp at layer-p, the

integral can be estimated by

Xp+1(v) =0 <t1p ZA(U,Uf)Xp(Uf)@p> (10)

Denote P as the number of layers of the deep architecture, and u?,- - ,u,i as
a batch of nodes. At each layer p, they uniformly sample with replacement the
nodes uf, - - ,ufp, then the output feature map is computed by

tp
n ~
Xy (0,7) =0 (t > Al)X, (uf, :>ep> ()
P =1
and the batch loss w.r.t. the output of the last layer is
tp
1
L= EZQ(Xp(uf,:)) (12)
i=1

where g(+) is some loss function. Note that this Monte Carlo estimator of the
original convolution could lead to a high variance of estimation. To reduce the
variance, the authors also formalize the variance and solve for a sampling dis-
tribution P of nodes. Due to the space limitation, we suggest the readers of
interests to refer to [10]. In addition, [9] is another recent work on the stochastic

Title Suppressed Due to Excessive Length 7

training of GCN [25]. To reduce the variance of the estimator, the authors use
the historical activations of nodes as a control variate and propose an efficient
sampling-based stochastic algorithm. Besides, the authors theoretically prove
the convergence of the algorithm regardless of the sampling size in the training
phase, and also the exact predictions in the testing phase in [9].

4 Spatial Graph Convolutional Networks

As the spectral graph convolution relies on the specific eigenfunctions of Lapla-
cian matrix, it is nontrivial to transfer the spectral based graph convolutional
network models learned on one graph to another graph whose eigenfunctions
are different. Spatial based methods, on the other hand, alternatively general-
ize the convolution to the combinations of the graph signal within the nodes
neighborhood and define the learnable filters in the vertex domain.

Monti et al. propose a generic graph convolution network framework named
MoNet [31] by designing a universe patch operator which integrates the signals
within the node neighborhood. In particular, for a node ¢ and its neighboring
node j € N (2), they define a d-dimensional pseudo-coordinates u(i, j) and feed it
into P learnable kernel functions (w(u),--- ,wp(u)). Then the patch operator
is formulated as Dy (i) = ;o p) wp(ulé, j))x(j), p = 1,--+, P where x(j) is
the signal value at the node j. The graph convolution in the spatial domain is
then based on the patch operator as

P
(x %, ¥)(0) =Y 8(p)Dyli)x (13)
=1

It is shown that by carefully selection of u(i,j) and the kernel function w,(u),
many existing graph convolutional network models [25,2] can be viewed as a
specific case of MoNet. SplineCNN [15] follows the same framework (i.e., Eq.
(13)) but uses a different convolution kernel based on B-splines.

From a more general perspective, the graph convolution in the spatial domain
can be alternatively thought of as an aggregation of a subset of nodes. Hamilton
et al. propose an aggregation based representation learning, named GraphSAGE
[22]. The full batch version of the algorithm is straightforward: for a node i, one
(1) aggregates the representation vectors of all its immediate neighbors in the
current layer via some learnable aggregator; (2) concatenates the representation
vector of node ¢ with the aggregated representation; (3) then feeds the concate-
nated vector to a fully connected layer with some nonlinear activation function
o(+), followed by a normalization step. The output of the last layer is considered
as the final representations of nodes, which can be followed by some loss func-
tion. The authors provide some choices of the aggregator functions, including the
mean aggregator, LSTM aggregator and the pooling aggregator. Among others,
using the mean aggregator makes the whole algorithm approximately resemble
the GCN model [25]. In addition, for training efficiency, they also provide a
minibatch variant by uniformly sampling the neighboring nodes [22].

Velickovic et al. design a novel attention layer that aggregates the features
of the neighboring nodes weighted by some learnable importance [39]. Consider
the input node attribute matrix X with each row as the feature vector of a node.

8 Si Zhang', Hanghang Tong', Jiejun Xu*, and Ross Maciejewski'

The attention layer contains a shared learnable weight matrix W and computes
the attention coefficients between node 7 and its neighbor node j € N (i) by
exp (WX (i, :)T[|[WX(j,:)T])
2 geni P (T [WX(i,) T[[WX(g,) T])
where || denotes the concatenation operation and a is a single-layer feedforward
neural network. This attention coefficient acts as a weight to encode the im-
portance of feature vector of the neighboring node j for node . And the final
output of the feature vector is computed by a linear combination X,,¢(7,:) =

(14)

Q5 =

o (Eje/\/'(i) a;; WX(7, :)T>. To stabilize the learning process, the authors apply

the multi-head attention [38] (i.e., L independent attention mechanism as Eq.
(14)), and then feed the average of the output of all heads to a nonlinearity.
Compared to the GCN model [25], more flexibility is achieved thanks to the
learnable importance of the nodes within the neighborhood.

Note that despite the inherent differences among the models above, all of
them can be viewed as an instance of using vertex filtering. It is just the strategy
of how to decide the weights w;; in Eq. (5) that differentiates the models.

5 Applications of Graph Convolutional Networks

The different graph convolutional network models can be also divided by what
kind of data they are applied to. Although a substantial amount of applica-
tions exist, we generally categorize them into (1) applications on graph data, (2)
applications on image and manifold, and (3) applications on other data.
Applications on Graph Data

A number of works have been proposed to solve the tasks on graphs. The
majority of them are for node classification, including [25, 10,31,22,39,17]. A
commonality among them is that the output feature map of these methods
can be considered as the node representations, and thus these methods can be
also naturally generalized to other node-level problems, such as link prediction,
node clustering and visualization. Another application is the graph classification.
One straightforward way is to aggregate the learned node representations as the
graph representations and then feed to some classifiers (e.g., fully connected
network). However, this may not be a quite promising strategy since the simple
aggregation of the isolated node representations may not represent the graph
in its entirety. [7,12,42] leverages the graph coarsening and pooling operator
to explore the hierarchical representations of graphs. In particular, [42] recently
designs a differential pooling operator that can generate the graph hierarchi-
cal representations. There are some other adapted graph convolutional network
models that aim to solve problems in specific domains. For example, Li et al. [28]
propose a diffusion convolutional recurrent neural network for traffic forecasting
by exploring spatial and temporal dependencies. [16] introduces a special graph
convolutional network architecture for protein interface prediction.
Applications on Images and Manifolds

Image classification problems have been studied for decades. Traditional CNN
based methods directly consider the images as a grid-like structure. The recent
graph convolutional network models allow to consider image classification as

Title Suppressed Due to Excessive Length 9

a classification on the non-Euclidean structures (e.g., graphs that encode the
relations among pixels). Briefly speaking, k-NN similarity graphs with pixels
of the images as the nodes need to be constructed and the image classification
problem is then converted to a graph classification problem. Existing works
on this problem include [7,12,31], etc. In addition, another application of the
graph convolutional network models in the computer vision area is to learn the
correspondence between the collections of 3D shapes represented by the discrete
manifolds. This problem is roughly cast as a labelling problem, i.e., to label each
node on a query shape with the index of the node on the target shape [31].
Applications on Other Data

In addition to the applications on graphs and manifolds, graph convolutional
network models are also widely used for natural language processing. For exam-
ple, [30] deals with the semantic role labelling by encoding sentences with the
graph convolutional network. Marcheggiani et al. attempt to use graph convolu-
tional network models for machine translation problems [29]. Besides, they can
also be used for recommender systems. In particular, Monti et al. cast the recom-
mender system problem as a matrix completion problem with two graphs as side
information, then define a multiple graph convolution operator of the convolution
layer to adapt the graph convolutional network model to solve the matrix com-
pletion problem [32]. Another notable work [41] deploys a random-walk-based
graph convolutional network model for high-quality recommendations. Besides,
the authors develop an on-the-fly convolution computation for efficient training
process and a MapReduce pipeline for efficient inferences.

6 Concluding Remarks

Graph convolutional network models, as one category of the graph deep learning
(or geometric deep learning) models, have become a very hot topic in both ma-
chine learning and data mining areas, and a substantial amount of models have
been proposed to solve different problems. In this survey, we conduct a compre-
hensive literature review on the emerging field of graph convolutional networks.
Specifically, we introduce two intuitive taxonomies to group the existing works.
These are based on the types of graph filtering operations, and based on the
areas of applications. For each taxomony, we highlight with some detailed exam-
ples from a unique standpoint. In addition to our survey, another comprehensive
tutorial on geometric deep learning [6] may help readers step into this areaMean-
while, despite the advancements made by the recent works, there still exist some
potential issues in the current graph convolutional network models. This way we
discuss some challenges and provide some potential future directions.
Multiple Graph Convolutional Networks

As already mentioned before, the major drawback of the spectral graph con-
volutional networks is its inability of adaptation from one graph to another graph
if two graphs have different Fourier basis (i.e., eigenfunctions of the Laplacian
matrix). The existing work [32] alternatively learns the filter parameters by gen-
eralizing the eigenfunctions of a single graph to the eigenfunctions of the Kro-
necker product graph of multiple input graphs.As a different track, the spatial

10 Si Zhang', Hanghang Tong!, Jiejun Xu*, and Ross Maciejewski'

graph convolutional network models attempt to learn the a rule of how to com-
bine neighboring nodes in the vertex domain which could be used on different
graphs. However, a drawback of these methods is the inability of modeling the
interactions (e.g., anchor links) or correlations (e.g., correlations among multiple
views) across multiple graphs. In fact, given multiple graphs, the representation
learning of a unique node should be able to benefit from more information pro-
vided across graphs or views. However, to our best knowledge, there is no existing
model aiming at the problems in this setting.
Hybrid Spectral-Spatial Graph Convolutional Networks

Note that the graph convolutional network models reviewed in this survey
start with either the spectral filtering in the frequency domain or the spatial
filtering in the vertex domain. This raises the issue that the existing graph
convolutional network models may not fully exploit the insights simultaneously
from both the spectral and spatial perspectives of the graph. Recall that the
anomaly detection on some classic 1-D signals requires the knowledge in both
time domain and frequency domain. In this way, a hybrid spectral-spatial graph
convolution operator may provide more comprehensive representations of nodes
and hence help some tasks, such as anomaly detection on graphs.
Deep Graph Convolutional Networks

Although the initial objective of graph convolutional network models is to
leverage the deep architecture for better representation learning, most of the
current models still suffer from their shallow structure. For example, GCN [25]
in practice only uses two layers. And as the authors analyzed, more convolution
layers may even hurt the performance [25]. This is also intuitive due to its sim-
ple propagation procedure. As deeper the architecture is, the representations of
nodes may become smoother even for those nodes that are distinct and far from
each other. This issue violates the purpose of using deep models. Consequently,
how to build a deep architecture that exploits the deeper structural patterns of
graphs is another possible research direction.

7 Acknowledgement

This material is supported by the National Science Foundation under Grant No.
I1S-1651203, 11S-1715385, 11S-1743040, and CNS-1629888, by DTRA under the
grant number HDTRA1-16-0017, by the United States Air Force and DARPA
under contract number FA8750-17-C-0153 !, by Army Research Office under the
contract number W911NF-16-1-0168, and by the U.S. Department of Homeland
Security under Grant Award Number 2017-ST-061-QA0001. The content of the
information in this document does not necessarily reflect the position or the pol-
icy of the Government, and no official endorsement should be inferred. The U.S.
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description:
a survey. Data mining and knowledge discovery 29(3), 626—688 (2015)

! Distribution Statement ” A” (Approved for Public Release, Distribution Unlimited)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Title Suppressed Due to Excessive Length 11

Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: NIPS (2016)
Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommend-
ing links in social networks. In: WSDM. pp. 635-644. ACM (2011)

Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: NIPS. pp. 585-591 (2002)

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex net-
works: Structure and dynamics. Physics reports 424(4-5), 175-308 (2006)
Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18-42 (2017)

Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding:
problems, techniques and applications. TKDE (2018)

Chen, J., Zhu, J., Song, L.: Stochastic training of graph convolutional networks
with variance reduction. In: ICML. pp. 941-949 (2018)

Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. TKDE (2018)
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: NIPS. pp. 3844-3852 (2016)
Dhillon, I.S.; Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a mul-
tilevel approach. IEEE transactions on pattern analysis and machine intelligence
29(11) (2007)

Ding, M., Tang, J., Zhang, J.: Semi-supervised learning on graphs with generative
adversarial nets. arXiv preprint arXiv:1809.00130 (2018)

Fey, M., Lenssen, J.E., Weichert, F., Miiller, H.: Splinecnn: Fast geometric deep
learning with continuous b-spline kernels. In: CVPR. pp. 869-877 (2018)

Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using
graph convolutional networks. In: NIPS. pp. 6530-6539 (2017)

Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In:
KDD. pp. 1416-1424. ACM (2018)

Gehring, J., Auli, M., Grangier, D., Dauphin, Y.N.: A convolutional encoder model
for neural machine translation. arXiv preprint arXiv:1611.02344 (2016)

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: CVPR. pp. 580-587 (2014)
Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Systems 151, 78-94 (2018)

Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD.
pp- 855-864. ACM (2016)

Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS. pp. 1024-1034 (2017)

Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Meth-
ods and applications. arXiv preprint arXiv:1709.05584 (2017)

Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spec-
tral graph theory. Applied and Computational Harmonic Analysis 30(2), 129-150
(2011)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 (2016)

12

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Si Zhang', Hanghang Tong!, Jiejun Xu*, and Ross Maciejewski'

Lee, J.B., Rossi, R., Kong, X.: Graph classification using structural attention. In:
KDD. pp. 1666-1674. ACM (2018)

Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting (2018)

Marcheggiani, D., Bastings, J., Titov, I.: Exploiting semantics in neural machine
translation with graph convolutional networks. arXiv preprint arXiv:1804.08313
(2018)

Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks
for semantic role labeling. arXiv preprint arXiv:1703.04826 (2017)

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Ge-
ometric deep learning on graphs and manifolds using mixture model cnns. In:
CVPR. vol. 1, p. 3 (2017)

Monti, F., Bronstein, M., Bresson, X.: Geometric matrix completion with recurrent
multi-graph neural networks. In: NIPS. pp. 3697-3707 (2017)

Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: KDD. pp. 701-710. ACM (2014)

Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. science 290(5500), 2323-2326 (2000)

Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borgwardt, K.M.:
Weisfeiler-lehman graph kernels. JMLR 12(Sep), 2539-2561 (2011)

Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Processing Maga-
zine 30(3), 83-98 (2013)

Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. science 290(5500), 2319-2323 (2000)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: NIPS. pp. 5998-6008 (2017)
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and
extensions: A general framework for dimensionality reduction. IEEE transactions
on pattern analysis and machine intelligence 29(1), 40-51 (2007)

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. arXiv preprint
arXiv:1806.01973 (2018)

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierar-
chical graph representation learning with differentiable pooling. arXiv preprint
arXiv:1806.08804 (2018)

You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: Graphrnn: A deep gen-
erative model for graphs. arXiv preprint arXiv:1802.08773 (2018)

Yu, W., Zheng, C., Cheng, W., Aggarwal, C.C., Song, D., Zong, B., Chen, H.,
Wang, W.: Learning deep network representations with adversarially regularized
autoencoders. In: KDD. pp. 2663-2671. ACM (2018)

Zhang, S., Zhou, D., Yildirim, M.Y., Alcorn, S., He, J., Davulcu, H., Tong, H.:
Hidden: hierarchical dense subgraph detection with application to financial fraud
detection. In: SDM. pp. 570-578. STAM (2017)

Zhou, D., Zhang, S., Yildirim, M.Y., Alcorn, S., Tong, H., Davulcu, H., He, J.: A
local algorithm for structure-preserving graph cut. In: KDD. pp. 655-664. ACM
(2017)

