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ABSTRACT

We focus on large graphs where nodes have attributes, such as a
social network where the nodes are labelled with each person’s job
title. In such a setting, we want to find subgraphs that match a
user query pattern. For example, a ‘star’ query would be, “find a
CEO who has strong interactions with a Manager, a Lawyer, and
an Accountant, or another structure as close to that as possible”.
Similarly, a “loop’ query could help spot a money laundering ring.

Traditional SQL-based methods, as well as more recent graph
indexing methods, will return no answer when an exact match does
not exist. Our method can find exact-, as well as near-matches, and
it will present them to the user in our proposed ‘goodness’ order.
For example, our method tolerates indirect paths between, say, the
‘CEQ’ and the ‘Accountant’ of the above sample query, when direct
paths do not exist. Its second feature is scalability. In general, if the
query has nq, nodes and the data graph has n nodes, the problem
needs polynomial time complexity O(n"¢), which is prohibitive.
Our G-Ray (“Graph X-Ray”) method finds high-quality subgraphs
in time linear on the size of the data graph.

Experimental results on the DLBP author-publication graph (with
356K nodes and 1.9M edges) illustrate both the effectiveness and
scalability of our approach. The results agree with our intuition,
and the speed is excellent. It takes 4 seconds on average for a 4-
node query on the DBLP graph.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications — Data
Mining
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1. INTRODUCTION

Given a large graph with attributed nodes, how can we quickly
find patterns that match, say, the “star’ query of the abstract? And
what should we do when no exact instance of the specified pattern
exists?

We propose Graph X-Ray (G-Ray), a fast method that finds sub-
graphs that either match the desirable query pattern exactly, or as
well as possible. We propose an intuitive goodness score g() to
measure how well a subgraph matches the query pattern, and we
give a fast algorithm to find and rank qualifying subgraphs. The
idea of best-effort is illustrated by an example. Figure 2(a) shows a
‘line” query on the fictitious graph of Figure 1. Since no instance of
the query exists, our system returns a ‘best-effort” match, as shown
in Figure 2(b). Traditional SQL-based methods, as well as more re-
cent graph indexing methods, will return no answer when an exact
instance of a pattern does not exist.

Contributions. G-Ray provides a framework and a method for
quickly finding the best-effort subgraphs that qualify for a given
pattern query on large (categorically) attributed graphs, like author-
conference networks (DBLP). Our main contributions are:

Effectiveness: G-Ray returns the best-effort results. That is, the
matching subgraphs will include all the nodes in the pattern
query and will conform to the pattern query’s graph struc-
ture — even when the exact pattern does not exist in the data
graph. The method carefully tolerates longer, indirect paths,
as guided by our proposed goodness score g().

Scalability: G-Ray scales up linearly (instead of polynomially)
with respect to the size of the data graph.

The rest of the paper is organized as follows. Section 2 describes
the formal definition of our inexact subgraph matching problem.
Sections 3 and 4 provide the overview and details of our proposed
approach, respectively. Our experimental results are in Section 5,
and related work in Section 6. We conclude the paper in Section 7.

2. PROBLEM DEFINITION

Here, we give the formal problem definition. To start with, we
assume that only the nodes in a data graph have categorical at-
tributes. We shall use a running example of the fictitious social
network of Figure 1, where nodes indicate people, the (weighted)
edges indicate volume of communication (e.g., number of phone-
calls exchanged), and the shape of each node indicates the job-title.

In this setting, the problem for Best-effort Subgraph Matching is
defined as follows
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Figure 1: A simplified social network with attributeson nodes.
"CEO’s (in Yellow Squares), 'SEC’ (secretaries, in green cir-
cles), etc

PROBLEM 1. Best-effort Subgraph Matching

Given: (i) A (large) graph G whose nodes have one categorical at-
tribute (like ‘job-title’), (ii) a query (small) graph H, show-
ing thedesirable configuration of professionals (e.g., a square-
star-hexagon-circle loop, asin Figure 2(e)), and (iii) the num-
ber of desired matching subgraphs '

Find: n’ matching subgraphs H; (t = 1,...,n’), that match the
query H, aswell as possible, according to a goodness score

g0)-

Next, we will define our goodness scoring function g(), after we
define some preliminary, important terms. Notice that the graphs
H, and H, are qualitatively different. The nodes of H, are at-
tribute values (e.g., ‘CEO,” ’Lawyer,’ etc), while the nodes of the
subgraph 7 are data nodes (e.g., people like ‘John Smith,” ‘Jane
Doe,’ etc).

2.1 Terminology

We say that a subgraph H: (as in Figure 2(f)) conforms to a query
graph H, (say, as in Figure 2(e)), if the subgraph has all the appro-
priate job-titles, with the correct connections between them, except
that some connections may be indirect, including additional nodes.
We shall refer to these extra nodes as intermediate nodes, and to
this phenomenon as interception. The non-intermediate nodes will
be referred to as matching nodes. Thus, node ‘12’ is an intermedi-
ate node in Figure 2(f), because, without it, nodes 11-13-4-7 would
form a perfect loop, matching the loop query of Figure 2(e). Simi-
larly, node “13” can be viewed as an intermediate node in the same
setting.

Whenever there is a matching subgraph H; we say that its match-
ing nodes instantiate the corresponding nodes of the query graph
‘Hq, and also that the subgraph instantiates the query. In the ex-
ample above (Figures 2(e-f)), node ‘11’ instantiates the circle node
(‘secretary”) of the loop query graph.

2.2 Goodnessfunction

How can we measure the goodness of a match g() between a
(conforming) subgraph H:, and a query graph H,? Intuitively, if
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Figure 2: Examples of queriesand results by G-Ray

two nodes are adjacent in the query graph H,, their matching nodes
should have good “proximity’ in the matching subgraph H;. There
are two questions: (a) how to measure the proximity of two nodes
in a graph and (b) how to combine all these proximity scores.

For the first question, we propose to measure the proximity r; ;
between node 7 and node j as the score of j on a random walk
with restarts, when node 7 is the restarting node. Once we decide
the fly-out probability ¢ (which is the probability of flying to a ran-
dom node; e.g., ¢ = 0.1 [20]), all the r; ; scores are well defined,
between any two nodes in our data graph G.

For the second question, we propose to consider only the edges
of the query graph, and aggregate the proximity scores r; ; of all
the pairs of (4, j) matching nodes, where nodes ¢ and 5 match nodes
of the query graph that are adjacent. For example, in the query and
subgraph example of Figures 2(e-f), and treating node ‘13’ as the
intermediate node, the goodness score would be the combination
of scores going clockwise on the edges 711,12, 12,4, 74,7, 77,11,
and counter-clockwise: 712,11, 711,7, 77,4, T4,12. HOw should we
combine these scores? Should we add them? or consider them in
triplets of nodes (‘chains”)? or in some other way? It turns out that
we can take their product, which has a probabilistic interpretation.
It is the probability that the appropriate random particles, walking
on the full data graph G with restarts, will find themselves on the
matching nodes of the subgraph H:.

Mathematically, we define the goodness score g(H,, H:) of a
subgraph H; with respect to a query graph H,, as the product of
4,5 proximity scores of the matching nodes, taken pairwise accord-
ing to the matched edges of H,.



DEFINITION1 (GOODNESS FUNCTION). Consider aquery graph

‘H, and a conforming data subgraph H;, with matching function
m(i) = v (i.e, data node 7+ matches/instantiates query node v),
then the goodness function g(H,, H:) is defined as

g(Hq, He) = H rs,; where ((m(i),m(j)) : edge in Hq (1)

Thus, Problem 1 is well defined. Given a data graph G and a
query graph H,, find the best n’ matching subgraphs (best accord-
ing to the aforementioned goodness function g()).

2.3 Discussion

Problem 1 is polynomial for fixed-size pattern queries. This is
prohibitive for large data graphs. Suppose you have a data graph G
with size n = (]V/|) and a query graph H, with size ny = (|Vg|),
then for a fixed-size n, the subgraph isomorphism problem is poly-
nomial O(n"?). G-Ray, on the other hand, has time complexity
linearly on the size of the data graph.

There are some additional observations and potential general-
izations, before we present an example. In this work, we assume
there is only one attribute (eg., job-title), with m possible cate-
gorical values (v1= ‘CEQ’, vo= ‘Manager’ etc, in our example).
Formally, the attributed graph G can be described by an n x n
node-to-node matrix W and an n x m node-to-attribute matrix A:
G = {W = [w; ], A = [as;,k]}. Each pair of nodes (i, j) is asso-
ciated with a nonzero weight w; ; if there exists an edge between
them. For every node 4, it is associated with an attribute vector
@ = [aig,...,aim]’: aix = 1if node i is labelled with k"
attribute value; 0 otherwise.

The query H, is another graph (usually much smaller compared
with G). The nodes of H, are labelled with 1-out-of-m attribute
values, indicating what kinds of nodes we want to find, while the
edges of H, indicate what kinds of connection we require between
different nodes. Like G, the query graph can also be denoted by two
matrices: as H, = {Wg, A4}. Similarly, every resulting subgraph
is also denoted by two matrices: H; = {W;, A;}.

Table (1) gives all the symbols used in the paper. Following stan-
dard notation, we use calligraphic for subgraphs (e.g., Hq, G, H),
bold capitals for matrices (e.g., W, A), and an arrow for column
vector (e.g., @;). Since we have two graphs (G, H,) as inputs, for
clarification, we reserve i, j as the indices for the nodes in G. That
is, (4, 7) is the index for the edges in G. We reserve k, [ as the in-
dices for the nodes in H,, where (k, 1) is the index for the edges
in H,. Node 7 in G can be uniquely identified by (i, ). If node
i in G only has one attribute value k, or we only care for its k"
attribute value, we denote it as (7, k) for simplification.

24 Anlllustrative Example

As we mentioned, we allow best-effort matching, in the sense
that we allow for indirect paths, when the desirable direct paths do
not exist.

Figure (1) gives a simplified social network (who-talks-to-whom)
with job title as the node attribute, which can take 1-out-of-4 val-
ues: “accountant”, “manager”, “CEQ”, and “SEC” (short for ‘sec-
retary’). Thus, the who-talks-to-whom graph G is represented by
a 14 node-to-node matrix and a 14 x 4 node-to-attribute matrix
A. For example, if we store the attribute values “Accountant”,
“Manager”, “CEQO”, and “SEC” sequentially, the attribute vector
@s = [1 00 0]” since node 4 is labelled as “Accountant” (the first
attribute value). Thus, we can identify node 4 in this graph by ei-
ther (4,[1 0 0 0]7) or simply as (4, 1) (since here every node is
only labelled by one attribute value.)

Figure (2) shows some sample queries as well as the correspond-
ing results. Fig. (2.a) is a line-query, that is “find instances of Ac-
countant, Manager, SEC and CEO such that, the qualifying Man-
ager has strong connection with CEO as well as Accountant; while
the qualifying CEO has strong connection with Manager and SEC.”
Fig. (2.b) shows a best-effort match (the connection between node
11 and node 13 is indirect).! Fig. (2.d) shows an exact match for
the star-query in Fig. (2.c), which says “find an Accountant, a Man-
ager, a SEC and a CEO such that the qualifying Manager has strong
connections to the other 3.” Figures (2.e-h) show some more com-
plicated queries and corresponding results. Again, the results are
not exact, but best-effort.

3. PROPOSED METHODS: OVERVIEW

3.1 Preliminaries: Interaction with SQL

If we only wanted exact matches, we could write SQL queries to
identify any and all of the patterns in the left column of Figure 2.
G-Ray has two distinct advantages: (a) it can allow for best-effort
matches (tolerating longer, indirect paths, when direct paths do not
exist) and (b) due to our proposed goodness function g(), it can
rank the output and avoid flooding the user with a potentially huge
number of near-unimportant matches.

On the other hand, our method can easily incorporate SQL, if
necessary. That is, we can always use our algorithm together
with, rather than ‘against,” SQL-based methods. For example, if
there exist many exact matching results, we can use SQL as a pre-
processing step for finding all the results and then feed them to
G-Ray to find a few ‘best’ ones, and/or to rank the results.

3.2 Preliminaries; Random Walks and CePS

Our G-Ray method uses two stepping stones: the random walk
with restart idea [16, 20] and the CenterPiece Subgraphs idea [19].
The former is necessary to estimate our proposed goodness func-
tion g(), as shown in equation (1). There are fast algorithms to
compute or partially pre-compute the desirable proximity scores
r,,; for every pair of nodes (4, j). G-Ray is completely independent
of how the proximity scores are computed, and thus it can easily
take advantage of any fast method, as well as any faster method
that may appear in the future.

The other stepping stone is the CenterPiece Subgraphs (CePS),
which operate on a plain graph (no attributes on the nodes) to find
the few most central (‘CenterPiece’) people that are well connected
to the & given query nodes. For example, if ‘Smith’, “‘Johnson’ and
‘Thompson’ are data mining researchers in a graph where the links
represent coauthorship, the query would be who are theresearchers
that are most central to all three of them? CePS is able to quickly
find such central/CenterPiece nodes, and we make heavy use of it.
3.3 TheOutline of G-Ray

Since we allow inexact match, there might be two types of nodes
in the resulting conforming subgraphs: matching data nodes and
intermediate data nodes. The latter are nodes which bridge two
matching nodes when no direct connection exists between them.

Given a query graph Hg, how should we start looking for promis-
ing subgraphs H, i.e., data subgraphs that may have high goodness
score g()?

Our idea is best illustrated with an example. This time we shall
use the ‘line’ query of Figure (2.a). At the high level, we want
to find good starting points (seed data nodes), like square (CEO)

YFor the query examples shown here, G-Ray also finds other exact
matches, e.g., the subgraph containing nodes 1, 5, 11, 12 for the
line-query. For clarity of exposition, we omit them.



Table1: Symbols

Symbol Description
G={W,A} the attributed graph
W = [w; ;] the n x n node-to-node matrix (i,j = 1,...,n) for G
A = [a; ] the n x m node-to-attribute matrix(z = 1,...,n, k=1, ...,m) for G
n the total number of nodes in the attributed graph G
m the total number of attribute values
n the total number of nodes in G having attribute value |
0] the indices for nodes in G. Correspondingly, (z, 7) is the index for the edges in G
a; the attribute vector for node i in G. @ = [ai1, ..., aim] "
He = {W,, A} | the attributed query graph
Ng the number of nodes in the query graph
k,l the indices for nodes in H,. Correspondingly,(k, 1) is the index for the edges in H,
H: = {W4, A} | the resulting matching subgraphs (t = 1,...,n)
n’ the number of required subgraphs
c the fly-out probability of random walk with restart
T4j the steady-state probability that a particle will find itself at node 5 when it does
random walk with restart from node ¢ in G
Tk the steady-state probability that a particle will finally find itself at attribute node &
when it does random walk with restart from attribute node [ in H,.

nodes surrounded by many circle (SEC) nodes and many hexagonal
(Manager) nodes. Say we find that node ‘13’ is the most promis-
ing such CEO node. The measure for ‘promise’ will be formally
defined next — and in fact, it is the CenterPiece node of a carefully
designed setting.

Once we have decided on a good ‘seed,” we want to expand to
create a full, conforming subgraph. For the line query scenario
above, G-Ray will choose the best neighboring node of the neces-
sary type (say, ‘SEC’), and then look for the best path to connect
them. In our example, suppose that node ‘11’ is the best neighbor-
ing node, and G-Ray has to go through node ‘12’ to connect the
CEO at ‘13’ with the ‘SEC’ at “11°.

The algorithm continues until the seed node ‘11’ is expanded to
a full, conforming subgraph (if possible). By its construction, the
resulting subgraph will have a high goodness score.

We can repeat with another seed node, until the user has all »’
matching subgraphs that he/she requested.

Thus, there are three basic modules in G-Ray:

e Seed-Finder : It selects a desired attribute-value node from
the query graph H,; and finds a “very promising” matching
data node with that attribute value according to H, when H,
is empty.

e Neighbor-Expander : It expands the seed node, by finding
a “good” matching node with the desired attribute value ac-
cording to H, when H, is partially built.

e Bridge: It finds a “good” path to connect two matching data
nodes if they are required to be connected according to H,,.

It can be seen that G-Ray generates the resulting conforming
subgraphs H:(t = 1,...,n’) one by one. For each subgraph, it
first sets H. to be NULL (step 2); every node k in H, is marked
as “un-processed;” and every edge (k, 1) in H, is marked as “un-
processed.” Then, G-Ray builds the subgraph H; gradually, by the
above three modules: Seed-Finder , Neighbor-Expander , and
Bridge. In addition, we also need to keep track of the status of
the nodes and edges in the query graph H,, which is defined as
following:

Algorithm 1 G-Ray
Require: The attributed graph G, the query graph H,, and the
number of resulting subgraphs. n’
Output: The resulting subgraphs H:(t = 1, ...,n’).
1: fort =1:7n'do
© initialization
find matching node (i, k) by Seed-Finder
add (¢, k) to H, and mark node & in H, as “touched”
repeat
pick up a “touched” node & in H,
for each of k’s “un-processed” edges (k, ) in H, do
find matching node (j, 7) by Neighbor-Expander
find a “best” path between i and j by Bridge
10: add it to H;; mark edge (k, ) as “processed”
11: end for
12: update the status of node £ and [ in H,
13:  until every node in H, is marked as “processed”
14: end for

NGO RWN

e An edge (k,1) in H, is “processed” iff 1) there exist two
matching nodes in (i, k) and (7, 1) in H,, and 2) Bridge has
been applied to these two nodes; otherwise the edge (k,1) is
“un-processed.”

e A node k in H, is “processed” iff all of its adjacent edges
have been marked as “processed;” the node k in Hy is “un-
touched” iff all of its adjacent edges in H, have been marked
as “un-processed;” otherwise the node & in H, is “touched.”

4. PROPOSED METHODS: DETAILS

In this section, we provide the details of G-Ray. There are three
basic modules of G-Ray, as we mentioned before. In the first two,
Seed-Finder and Neighbor-Expander , we find those matching
nodes with desired attribute values. The Bridge
module identifies intermediate nodes (if necessary) and finds a “best
path” to connect two matching nodes.



4.1 Seed-Finder

Seed-Finder takes the attributed graph G, the query graph H,
and the one attribute value % in 7,2 as input, and outputs a quali-
fying seed node (i, k) in G.

Let g(Hq, ) be the goodness function for a given node (i, k):

9(Hg,i) 2 [] riv (m(G) = k,m(j) =1) : edgein Hy (2)
3

It can be seen that g(H,, ) is the contribution of node (7, k)
to the total goodness function in Equation (1). Thus, if all of ¥'s
neighbors have been instantiated/matched, we can just choose seed
node (i, k) by optimizing Equation (2).

However, since the resulting subgraph H: is empty, to ensure
that the final subgraph H; is well connected, a matching node (i, k)
should also have high proximity score with some unknown node
(4,1), even if the attribute value % is not directly adjacent to [ in
the query graph H, (as long as they are closely related to each
other). Moreover, if in the query graph H,, the attribute value % is
closely related to two different attribute values I and I’, we should
give more weight to the attribute value that is more relevant to k.
Finally, since the resulting subgraph H; is empty, we really do not
know which node (7,1) in graph G should be referred to. Thus, we
relax this quantity to the average proximity score for node (i, k)
w.r.t. all the nodes (j, ) in graph G.

Formally, g(H,, ) in Seed-Finder is relaxed as follows:

ooy =[[ (= 3

n
L, I#k {3Im@G)=1}

1
7j,6) "Lk ®)

where n; is the total number of nodes in G having attribute [; and
1, Measures the proximity between [ and & by random walk with
restart on H, (see Table 1).

The pseudo code of Seed-Finder is given in Alg.(2). Note that
in step 7, we maintain a global seed list (sl) which contains all the
seeds found in the previous subgraphs(Hu, ..., H:—1). In this way,
we ensure that different subgraphs have different seeds.

Algorithm 2 Seed-Finder

Require: The attributed graph G, the query graph H,, and one
attribute value k in H,.
Output: One matching seed node (i, k) in G.
for each I € Hq(l # k) do
compute 7
end for
for each (i, k) in G do
compute g(Hgq, ) by equation (3)
end for
return: ¢ = argmax; .q g(Hq, j)

4.2 Neighbor-Expander

Neighbor-Expander takes as input the attributed graph G, the
query graph H,, one “touched” attribute value k in H,, and the
partially built subgraph ;. It outputs a matching node (¢, k) in G.

The basic idea of Neighbor-Expander is similar to that of Seed-
Finder . However, at this point, we already have the partially built
subgraph H;, which distinguishes the two modules.

First of all, since k is marked as “touched,” at least some of its
edges in H, must have been marked as “processed.” Suppose edge

2In this paper, we always choose the attribute value with the highest
degree in H,.

(k, 1) is marked as “processed,” there must exist some matching
nodes (7, 1), which can be used in calculating g(Hq, ). Secondly,
given a node (4, k), while Seed-Finder relaxes its goodness func-
tion g(Hg4,4) to all attribute nodes (except node & itself) in the
query graph H,, in Neighbor-Expander we do not need this relax-
ation to ensure that the final H; is well-connected since the result-
ing subgraph H; is already partially built. Finally, while in Seed-
Finder the (relaxed) average score (e.g., Equation (3)) is weighed
by the proximity between [ and k, in Neighbor-Expander this is
not weighted because every [ is directly adjacent to k& — i.e., 7 i
does not make much difference.

Formally, the goodness function g(H,, ) in this case is relaxed
as Equation (4). Note that the indicator function I (I, k) = 1 if edge
(I, k) in H, is marked as “processed”, and 0 otherwise. Also the
whole product is taken among k’s directly adjacent neighbors in
‘Hq. The pseudo code of Neighbor-Expander is given in Alg. (3).

ria) TR ()4

s = [ (= 3

n
L, (kD) {3Im@G)=1}

Algorithm 3 Neighbor-Expander

Require: The attributed graph G, the query graph H,, one
“touched” attribute value % in H,, and the partially built sub-
graph H.

Output: One qualifying node (i, k) in G.

: for each (i, k) in G do

compute g(Hg, ) by equation (4)

: end for

L return: ¢ = argmax; g4, 7(Hq, j)

B wN P

4.3 Bridge

Bridge takes as input two matching nodes ¢ and j, and the at-
tributed graph G. It outputs a “best path” to connect ¢ and j.

At first glance, we can use the “EXTRACT” algorithm [19] or
the display generation algorithm [7]. However, the situation is dif-
ferent in our problem setting. First of all, as the matching sub-
graph H; grows, some intermediate nodes might be already in the
partially built H;, both “EXTRACT” [19] and display generation
algorithm [7] will favor such kind of paths because of the total bud-
get limitation on the size of the subgraph. However in our problem
setting, we forbid such paths. Otherwise, H: might not conform
with the query graph H, because of path overlap. More impor-
tantly, here we only need to find one “best” path (rather than multi-
ple “best” paths in “EXTRACT” and display generation algorithm),
which enables us to design a more efficient, Prim-like, algorithm.
Formally, we define the “best path” between two matching nodes 4
and j as the one that maximizes the captured proximity score along
the path over the total length of the path. Intuitively, a “best path”
should contribute as much as possible for a particle to reach j from
i when it does random walk with restart from node <.

The pseudo code of Bridgeis given in Alg. (4). Note that in step
8, if the node v is already in the H;, we will block it.

4.4 Efficiency Issues

In G-Ray we use random walk with restart. First of all, the size
of the query graph H, (usually less than 10 nodes) is much smaller
than the attributed graphs, so the main time cost lies in the random
walk with restart in G. In this subsection, we first reduce the total
number of random walks with restart by constructing an augmented



Algorithm 4 Bridge

Require: The attributed graph G, two matching nodes 4, 7, and the
partially built subgraph H;.
Output: One “best” path connecting node i and j in G.

1: let V be the total node setin G: V = {1,2,...,n},
2: let X = {i}, d(i) = rs, len(i) = 1, and Pre(i) = 4
3: for each node » in V do
4:  d(u)=0,len(u) =0
5: end for
6: whileV is not empty do
7w =argmax;, d(i), move u fromV to X
8:  for each edge (u,v)inG,v € V,and v ¢ H, do
9: if d(’l}) < ri v td(u)len(u) then
len(u)+1
10: d(v)="2 B en(v)=len(u)+1,Pre(v)=u
11: end if
12:  end for
13: end while
14: Output the path from i to 5 by tracing back Pre(5).

graph (to be described next); and then we use a hybrid strategy to
perform only one random walk with restart.

Based on Equations (3 and 4), we will have to perform a lot of
random walks with restart. For example, for one item in g(Hg, ¢)
for a given node (i, k), we need n; random walks with restart if
edge (k, 1) has been marked as “un-processed.” Thus, in total we
will need at most (nq + Hleﬁq ny) random walks with restart,
which might be very time consuming. However, based on the fol-
lowing lemma, the number of random walks with restart can be
largely reduced. We give the formal definition of the augmented
graph, and then follow with an example (see Figure (3)).

LEMMA 1. Givenan attributed graph G = {W, A}, construct
an augmented graph W' as Equation (5). Let r;,(1 < i,j <
n + m) be the steady-state probability that a particle will find itself
at node ¢ when it does random walks with restart from node j in the
augmented W', Then the following equivalence holds:

- Z : l
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In the augmented graph W’, we refer to the newly added nodes
as attribute nodes, and to the original nodes in W as data nodes.
Intuitively, we put a directed edge from the attribute node to each
of the data nodes having the corresponding attribute value. For
example, Figure (3) is the augmented graph for the simplified social
network in Figure (1). We introduce a new node for the attribute
value CEO; and put a directed edge from this node to both nodes
12 and 13, respectively. For the other attribute values, we process
similarly.

In order to measure the average proximity for a given node
w.r.t. all the data nodes having attribute value [ in G, (according to
Lemma 1) we only need to do random walk with restart from the
corresponding attribute node (n + 1) in the augmented graph W',
Based on Lemma 1, it can be proved that we only need at most 2n,,
random walks with restart on the augmented graph W’.
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Figure 3: Augmented graph for the attributed graph in Fig-
ure(1). Small-sizeglyphsstand for “attribute’” nodes, and have
(directed) connectionsto the corresponding data nodes.

The most straightforward way to solve one random walk with
restart is the iterative method [16], which is simple and accurate.
However, it is slow for large graphs. In existing literature, there are
many fast/approximate solutions, e.g., BlockRank [12], Fingerprint-
based method [8], B_Lin [20], etc. It should be pointed out that
these methods are orthogonal to G-Ray — i.e., we can choose any
of them. In this paper, we use a hybrid strategy. Specifically, we
use B_Lin [20] to generate a small fraction of the whole attributed
graph G as the so-called candidate graph; and then run the whole
algorithm on this candidate graph by the iterative method. As we
will show in the next section, this strategy will largely reduce the
response time (usually one order of magnitude faster).

5. EXPERIMENTAL EVALUATION

We present experiments to answer the following questions:

e Effectiveness of our goodness function g(): do the matching
graphs agree with our intuition?

e Speed and scalability: How does G-Ray scale up for large
graphs?

51 Experimental Setup

5.1.1 Datasets

We use the DBLP dataset® to construct the attributed graph, where
the nodes are authors and the attribute is the conference name (and
year, e.g., ‘KDD-2001"). The node-to-node matrix W is constructed
from the authorship (w;,; is the number of the co-authored paper
between author 4 and j); the node-to-attribute matrix A is con-
structed from author-conference relationship (a;,; = 1 if the author
1 has ever published in the conference j, 0 otherwise). In total, there
are n=356,364 nodes; £=1,905,970 edges, and m=12,920 attribute
values in the graph.

5.1.2 Parameter Settings

Selection of the size of the candidate graph is a trade-off be-
tween the response time and the quality/goodness of the resulting
subgraphs. We perform the following parametric study. For a given
size of the candidate graph, we issue a 4-node query and return
the top-5 subgraphs. We test different types of queries (line-query,

3http ://www.informatik.uni-trier.de/ ley/db/



loop-query, and star-query). For each type of query, the experiment
is run multiple times.

Figure (4) shows the mean log quality/goodness vs. the aver-
age response time per subgraph. There is a plateau in Figure (4)
at log(goodness) = -30, starting at 3 seconds of average response
time. At this point, the size of the candidate graph is 1% of the
whole graph. Thus this is the ratio that we use in the remaining
experiments.

Log of goodness function

1 2 3 4 5 6 7 8
Average response time per subgraph (Sec)

Figure 4: Quality vs. response time. Notice the plateau, start-
ing at about 3 seconds.

There are two parameters left, the fly-out probability ¢ of ran-
dom walk with restart, and the number of iterations for the iterative
method. In all the experiments, c is set to be 0.1 and the number
of iterations is set to be 50 since no performance improvement is
observed with more iterations.

5.2 Effectiveness

The question is how effective our proposed goodness function
g() is, and whether the subgraphs that G-Ray retrieves would agree
with the intuition of a domain expert.

Figures 5(a-f) show three queries (star, line, loop) and the result-
ing retrieved graphs. In all the cases, the results make sense.

Let us analyze the “star’ query first, which requests a star-shape
group of co-authors, with one author from each of PODS, IAT (‘In-
telligent Agent Technology’) and ISBMS (‘Int. Symposium on
Biomedical Simulation’). We see that Philip Yu is in the center,
with the rest of the matching nodes being well known domain ex-
perts (H. Wang of IBM, Mark Zhang for Agents); the connection
to biomedical simulation is strained, requiring an interception (by
Bing Liu).

For the line query (‘find a chain of co-authors, from STOC to
SIGMOD to ICML to ISBMS’), again G-Ray retrieves well es-
tablished researchers from theory (Charikar), databases (Garcia-
Molina), machine learning (Fayyad); and, again, the connection to
biomedical simulation is strained, requiring 3 intermediate nodes
(in white, or unshaded).

The loop query (KDD, RECOMB, INFOCOMM, and ICML) is
also very interesting. There is a gap between KDD96 and RE-
COMBO0O0 (biology). In addition, there is a surprising, direct link
between biomedical and computer networks (Karp-Shenker). Fi-
nally, there is a long path from INFOCOMMOO to ICML93 (prob-
ably due to both chronological difference, as well as the lack of
interaction between the research communities).

5.3 Efficiency

We use different sizes of subsets of the whole DBLP dataset to
test how G-Ray scales with the size of the graph. For each sub-

set, we randomly generate a 4-node query of different types (star-
query, line-query, and loop-query) and return the top-5 subgraphs.
For each type of query, we run the experiment multiple times and
report the average time. We compared two strategies for perform-
ing random walk with restart G-Ray: 1) using the iterative method
on the whole subset (Ite-G-Ray) and 2) using the hybrid strategy as
in Section (4.4) (Fast-G-Ray).

The average response time per subgraph vs. the number of nodes/
edges is presented in Figure 6. It can be seen that in both cases, G-
Ray scales linearly with the size of the graphs. More importantly,
Fast-G-Ray scales linearly with a much smaller slope. For example,
on the full size of graph (356K nodes and 1.9M edges), the average
response time per subgraph is 3 seconds, while it takes more than
1 minute for Ite-G-Ray.
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(b) Average response time vs. number of nodes

Figure 6: Scalability of G-Ray. Time versus data graph size.
Both versions of G-Ray scale linearly, with Fast-G-Ray (bottom)
having significantly lower slope.

6. RELATED WORK

Graph matching algorithms vary widely due to differences in the
specific problems they address. G-Ray is a fast approximate algo-
rithm for inexact pattern matching in large, attributed graphs. G-
Ray extends the ideas of connection subgraphs [7] and centerpiece
graphs [19, 20] and applies them to pattern matching in attributed
graphs. This work is also related to the idea of network proximity,
which builds on connection subgraphs [13].

While there has been a large amount of work on graph matching
over the past 30 years, much of it is not directly applicable to our
problem setting. Many graph matching techniques focus strictly on
matching graph structure and do not utilize attributes. Other work
focuses on exact matching, but cannot handle inexact matching.



Still other methods focus on matching against a database of many
small graphs (i.e., the graph-transaction setting) instead of a single
large graph (i.e., the single-graph setting). The single-graph setting
is more general and algorithms developed for single graphs can be
readily applied to the graph-transaction setting, although the con-
verse is not true [15]. For additional background on graph matching
algorithms, we refer the reader to a recent survey by Gallagher [9].

There has been significant work on inexact graph matching [18,
21, 10, 22, 5, 1], on matching attributed graphs [21, 18, 10, 3,
22, 5], and on matching in the single-graph setting [3, 22, 5, 1].
However, there are relatively few algorithms that combine the three
to tackle inexact matching in large, attributed graphs [6, 22, 5, 1].
Furthermore, while these algorithms employ various optimizations
to mitigate the computational complexity of the problem, they all
exhibit super-linear complexity in the worst case. Unfortunately,
it is also difficult to determine the performance characteristics of
these algorithms due to a lack of reported results and complexity
analysis.

In addition to the graph matching work described above, there is
related work of interest in the database and data mining literature.
Our work focuses on finding instances of user-specified patterns in
graphs. Related problems include discovery of frequent or interest-
ing patterns (i.e., graph mining) and inexact querying of databases.

Yan, Yu, and Han propose efficient methods for indexing and
mining graph databases based on the occurrence of frequent sub-
structures [23, 24]. Jin et al. use the concept of a topological mi-
nor to quickly discover frequent large-scale patterns [11]. As with
many of the graph matching techniques described above, these min-
ing algorithms are designed for graph-transactional databases (e.g.,
collections of biological or chemical structures) and are not read-
ily applicable to the single-graph setting. Cook and Holder [6] and
Kuramochi and Karypis [15] propose algorithms for graph mining
in the single-graph setting. The empirical evaluation by the latter
shows that their method outperforms that of Cook and Holder in
terms of runtime on a number of real data sets. Pei et al. [17] take
on a somewhat different graph mining task. Their goal is to dis-
cover quasi-clique patterns across multiple related graph data sets
(e.g., groups of customers with similar behavior across markets).
We refer the reader to Chakrabarti’s book [4] on Web mining for
more information on Web and graph mining techniques.

We also find related work in the area of inexact querying of
relational databases. Koudas et al. propose a method for relax-
ing relational database queries to accommodate near, but inexact
matches [14]. However, this work does not support inexact struc-
tural matching. The method will relax attribute value conditions
and join conditions, but there is no flexibility in terms of what re-
lations are involved in the joins. The BANKS system proposed
by Bhalotia et al. enables a user to issue keyword-based queries
to a relational database without any knowledge of the underlying
database schema [2]. BANKS models database tuples as nodes in a
graph, but is restricted to return tree-structured results. G-Ray im-
poses no such restriction. In addition, BANKS assesses relevance
of results based on the proximity of matching nodes and an infor-
mation retrieval inspired weighting scheme. In our method, results
are ranked according to the goodness function.

7. CONCLUSION

We have addressed the problem of finding best-effort subgraph
patterns in attributed graphs. The typical query is, say, ‘find a po-
tential money laundering ring, consisting of alternating nodes of
businessmen and bankers.” To the best of our knowledge, this is
the first method that returns best-effort results, even when the exact
pattern does not exist in the dataset. The second major characteris-

tic of our method is that it scales very well with the database size.
Our experiments show that the wall-clock time grows near-linearly
with the size of the graph.

We also report experiments on the DBLP dataset (356K nodes,
1.9M edges), where the results agree with intuition, and the wall-
clock time is about 3-5 seconds, on a commaodity PC.

Future work includes extension to handle attributes on the edges.
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Figure5: Sometypical querieson DBLP dataset and some of their results.



