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ABSTRACT

Diversified ranking on graphs is a fundamental mining task and has
a variety of high-impact applications. There are two important open
questions here. The first challenge is the measure - how to quan-
tify the goodness of a given top-k ranking list that captures both
the relevance and the diversity? The second challenge lies in the
algorithmic aspect - how to find an optimal, or near-optimal, top-k
ranking list that maximizes the measure we defined in a scalable
way?

In this paper, we address these challenges from an optimization
point of view. Firstly, we propose a goodness measure for a given
top-k ranking list. The proposed goodness measure intuitively cap-
tures both (a) the relevance between each individual node in the
ranking list and the query; and (b) the diversity among different
nodes in the ranking list. Moreover, we propose a scalable algo-
rithm (/inear wrt the size of the graph) that generates a provably
near-optimal solution. The experimental evaluations on real graphs
demonstrate its effectiveness and efficiency.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications — Data
Mining

General Terms

Algorithm, experimentation

Keywords

Diversity, ranking, scalability, graph mining

1. INTRODUCTION

Given an author-paper network, how to find the top-k most re-
lated conferences for a given author? How to diversify the ranking
list so that it captures the whole spectrum of the given author’s re-
search interest? It is now widely realized that diversity is a key fac-
tor to address the uncertainty and ambiguity in an information need;
and to cover the different aspects of the information need [32].
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Diversity is also positively associated with personnel performance
and job retention rate in a large organization [38].

Despite their own success of the previous works (See Section 6
for a review), two important questions remain open in diversified
ranking on large graphs. The first challenge is the measure - for a
given top-k ranking list, how can we quantify its goodness? Intu-
itively, a good top-k ranking list should capture both the relevance
and the diversity. For example, given a task which typically re-
quires a set of different skills, if we want to form a team of experts,
not only should the people in the team have relevant skills, but
also they should somehow be ‘different’ from each other so that
the whole team can benefit from the diversified, complementary
knowledge and social capital. However, there does not exist such a
goodness measure for the graph data in the literature. Most of the
existing works for diversified ranking on graphs are based on some
heuristics. The only exception is [27], where the authors made an
important step towards this goal by providing some optimization
explanations, which is achieved by defining a time-varying objec-
tive function at each iteration. But still, it is not clear what overall
objective function the algorithm tries to optimize.

The second challenge lies in the algorithmic aspect - how can we
find an optimal, or near-optimal, top-k ranking list that maximizes
the goodness measure? Bringing diversity into the design objective
implies that we need to optimize on the set level. In other words, the
objective function for a subset of nodes is usually not equal to the
sum of objective functions of each individual nodes. It is usually
very hard to perform such set-level optimization. For instance, a
straight-forward method would need exponential enumerations to
find the exact optimal solution, which is infeasible even for medium
size graphs. This, together with the fact that real graphs are often of
large size, reaching billions of nodes and edges, poses the challenge
for the optimization algorithm - how can we find a near-optimal
solution in a scalable way?

In this paper, we address these challenges from an optimization
point of view. We propose a goodness measure which intuitively
captures both (a) the relevance between each individual nodes in
the ranking list and the query node; and (b) the diversity among
different nodes in the ranking list. We further propose a scalable
algorithm (linear wrt the size of the graph) that generates a prov-
ably near-optimal top-k ranking list. To the best of our knowledge,
this is the first work for diversified ranking on large graphs that
(1) has a clear optimization formulation; (2) finds a provably near-
optimal solution; and (3) enjoys the linearly scalability. The main
contributions of the paper are summarized as follows:

e A measure to quantify goodness for a top-k ranking list that
captures both relevance and diversity;

e An algorithm to find a diversified top-k ranking list from
large graphs;



Table 1: Symbols

| Symbol | Definition and Description |
A B, ... | matrices (bold upper case)
A(i,j) the element at the i** row and j*" column of A
A(iy:) the " row of matrix A
A7) the 7" column of matrix A
A’ transpose of matrix A
a,b,... vectors
7,J,.. sets (calligraphic)
® element-wise Hadamard product
r ann x 1 ranking vector
P ann X 1 query vector (p(¢) > 0,>.7"  p(i) =1)
I an identity matrix
1 a vector/matrix with all elements set to 1s
0 a vector/matrix with all elements set to Os
n,m the number of the nodes and edges in the graph
k the budget (i.e., the length of the ranking list)
c the damping factor 0 < ¢ < 1

e Proofs and complexity analysis, showing that our method is
provably near-optimal in terms of optimization quality with
linear scalability;

o Extensive experimental evaluations, demonstrating the effec-
tiveness and efficiency of our method.

The rest of the paper is organized as follows. We introduce no-
tation and formally define the problems in Section 2. We present
and analyze the proposed measure and algorithm in Section 3 and
Section 4, respectively. We provide experimental evaluation in Sec-
tion 5. We review the related work in Section 6 and conclude in
Section 7.

2. PROBLEM DEFINITIONS

Table 1 lists the main symbols we use throughout the paper. In
this paper, we consider the most general case of directed, weighted,
irreducible unipartite graphs. We represent a general graph by its
adjacency matrix!. Following the standard notation, we use bold
upper-case for matrices (e.g., A), bold lower-case for vectors (e.g.,
a), and calligraphic fonts for sets (e.g., Z). We denote the transpose
with a prime (i.e., A’ is the transpose of A). For a bipartite graph
with adjacency matrix W, we can convert it to the equivalent uni-

0 W
W 0
size of matrices/vectors (e.g., A, x» means a matrix of size n X n).
When the size of matrices/vectors are clear from the context, we
omit such subscripts for brevity. Also, we represent the elements in
a matrix using a convention similar to Matlab, e.g., A(z,7) is the
element at the " row and j*" column of the matrix A, and A (:, 5)
is the 5 column of A, etc. With this notation, we can represent
a sub-matrix of A as A(Z,Z), which is a block of matrix A that
corresponds to the rows/columns of A indexed by the set Z.

In this paper, we focus on personalized PageRank [30, 11] since
it is one of the most fundamental ranking methods on graphs, and
has shown its success in many different application domains in the
past decade. Formally, it can be defined as follows:

partite graph: A = ) We use subscripts to denote the

€]

where p is an n x 1 personalized vector (p(¢) > 0,> ., p(i) =
1). Sometimes, we also refer to p as the query vector. ¢ (0 < ¢ <

r=cA'r+(1-c)p

'In practice, we store these matrices using an adjacency list repre-
sentation, since real graphs are often very sparse.
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1) is a damping factor; A is the row-normalized adjacency matrix
of the graph (i.e., >27_; A(4,j) = 1 (i = 1,...,n); and r is the nx
1 resulting ranking vector. Note thatif p(i) = 1/n(i = 1, ..., n), it
is reduced to the standard PageRank [30]; if p(¢) = 1 and p(j) =
0(7 # 1), the resulting ranking vector r gives the proximity scores
from node ¢ to all the other nodes in the graph [37].

In order to simplify the description of our upcoming method, we
also introduce the so-called ‘Google matrix’ B:

B =cA'+ (1 - c)plixn (2)

where 11, is a 1 X n row vector with all elements set to 1s. In-
tuitively, the ‘Google matrix’ B can be viewed as the personalized
adjacency matrix that is biased towards the query vector p. It turns
out that the ranking vector r defined in eq. (1) satisfies r = Br. In
other words, the ranking vector r is the right eigenvector of the B
matrix with the eigenvalue 1. It can be verified that B is a column-
wise stochastic matrix (i.e., each column of B sums up to 1). By
Perron-Frobenius theorem [10], it can be shown that 1 is the largest
(in module) simple eigenvalue of the matrix B; and the ranking
vector r is unique with all non-negative elements since the graph is
irreducible.

Our goal is two-fold: (1) we want a goodness measure to quan-
tify the quality of a given top-k ranking list that captures both the
relevance and the diversity; and (2) given the goodness measure, we
want an optimal or near-optimal algorithm to find a top-k ranking
list that maximizes such goodness measure in a scalable way. With
the above notations and assumptions, our problems can be formally
defined as follows:

PROBLEM 1. (Goodness Measure.)

Given: A large graph A, «n, the query vector p, the damping fac-
tor ¢, and a subset of k nodes S;

Output: A goodness score f(S) of the subset of nodes S, which
measures (a) the relevance of each node in S wrt the query
vector p, and (b) the diversity among all the nodes in the
subset S.

PROBLEM 2. (Diversified Top-k Ranking Algorithm.)

Given: A large graph A, «n, the query vector p, the damping fac-
tor ¢, and the budget k;
Find: A subset of k nodes S that maximizes the goodness measure

fS).

In the next two sections, we present our solutions for these two
problems respectively.

3. THEPROPOSED GOODNESS MEASURE

In this section, we address Problem 1. Our goal is to define a
goodness measure to quantify the quality of a given top-k ranking
list that captures both the relevance and the diversity. We first dis-
cuss some design objectives of such a goodness measure; and then
present our solution followed by some theoretical analysis.

3.1 Design Objectives

As said before, a good diversified top-k ranking list should bal-
ance between the relevance and the diversity. The notion of rel-
evance is clear for personalized PageRank, - larger value in the
ranking vector r means more relevant wrt the query vector p. On
the other hand, the notion of diversity is more challenging. In-
tuitively, a diversified subset of nodes should be dis-similar with
each other. Take the query ‘Find the top-k conferences for Philip
Yu from the author-conference network’ as an example. Dr. Philip



Yu is a professor at University of Illinois at Chicago. His recent ma-
jor research interest lies in databases and data mining. He also has
broad interests in several related domains, including systems, par-
allel and distributed processing, web applications, and performance
modeling, etc. A top-k ranking list for this query would have high
relevance if it consists of all the conferences from databases and
data mining community (e.g., SIGMOD, VLDB, KDD, etc) since
all these conferences are closely related to his major research inter-
est. However, such a list has low diversity since these conferences
are too similar with each other (e.g., having a large overlap of con-
tributing authors, etc). Therefore, if we replace a few databases
and data mining conferences by some representative conferences
in his other research domains (e.g., ICDCS for distributed comput-
ing systems, WWW for web applications, etc), it would make the
whole ranking list more diverse (e.g., the conferences in the list are
more dis-similar with each other).

Furthermore, if we go through the ranking list from top down,
we would like to see the most relevant conferences to appear first
in the ranking list. For example, a ranking list in the order of ‘SIG-
MOD’, ICDCS’, " WWW’ is better than ‘ICDCS’, WWW’, ‘SIGMOD’
since databases (SIGMOD) is a more relevant research interest for
Dr. Philip Yu, compared with distributed computing systems (/CDCS),
or web applications (WWW). In this way, the user can capture Dr.
Philip Yu’s main research interest by just inspecting a few top-
ranked conferences/nodes. This suggests the so-called diminishing
returns property of the goodness measure - it would help the user
to know better about Dr. Philip Yu’s whole research interest if we
return more conferences/nodes in the ranking list; but the marginal
benefit becomes smaller and smaller as we go down the ranking list.

Another implicit design objective lies in the algorithmic aspect.
The proposed goodness measure should also allow us to develop
an effective and scalable algorithm to find an optimal (or at least
near-optimal) top-k ranking list from large graphs. We will discuss
and address this issue in the next section.

To summarize, for a given top-k ranking list, we aim to provide a
single goodness score that (1) measures the relevance between each
individual node in the list and the query vector p; (2) measures the
similarity (or dis-similarity) among all the nodes in the ranking list;
(3) exhibits some diminishing returns property wrt the size of the
ranking list; and (4) enables some effective and scalable algorithm
to find an optimal (or near-optimal) top-k ranking list.

3.2 The Proposed Measure

Let A be the row-normalized adjacency matrix of the graph, B
be the ‘Google matrix’ defined in eq (2), p be the personalized
vector and r be the ranking vector. For a given ranking list S (i.e.,
S gives the indices of the nodes in the ranking list; and |S| = k.),
the proposed goodness measure is formally defined as follows:

Goodness Measure:

f(8) =2 r@)— Y B(i,j)r(j) 3)

€S i,jJES

We can also represent f(S) by using the matrix A instead:

(8)=2) r@i)—c ) AGIr() —(1—¢)Y_r(j) Y pli)

€S i,jE€ES JES €S

where cis the damping factor in personalized PageRank, and 1, 4 s

is a row vector of length |S| with all the elements set to 1s. It can
be shown that it is equivalent to eq. (3).

Notice that the goodness measure in eq (3) is independent on the
ordering of the different nodes in the subset S. If we simply change
the ordering of the nodes for the same subset S, it does not affect
the goodness score. However, as we will show in Section 4, we can
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still output an ordered subset based on the diminishing returns need
when the user is seeking for a diverse top-k ranking list.

3.3 Proofs and Analysis

Let us analyze how the proposed goodness measure meets our
design objectives in subsection 3.1.

There are two terms in eq (3), the first term is twice the sum
of the ranking scores in the ranking list. For the second term, re-
call that B can be viewed as the personalized adjacency matrix wrt
the query vector p, where B(%, j) indicates the similarity (i.e., the
strength of the connection) between nodes ¢ and j. In other words,
the second term in eq (3) is the sum of all the similarity scores be-
tween any two nodes i, j(i,j € S) in the ranking list (weighted
by r(5)). Therefore, the proposed goodness measure captures both
the relevance and the diversity. The more relevant (higher r(7))
each individual node is, the higher the goodness measure f(S). At
the same time, it encourages the diversity within the ranking list by
penalizing the (weighted) similarity between any two nodes in S.

The proposed measure f(S) also exhibits the diminishing returns
property, which is summarized in Theorem 1. The intuitions of
Theorem 1 are as follows: (1) by P1, it means that the utility of an
empty ranking list is always zero; (2) by P2, if we add more nodes
into the ranking list, the overall utility of the ranking list does not
decrease; and (3) by P3, the marginal utility of adding new nodes
is relatively small if we already have a large ranking list.

THEOREM 1. Diminishing Returns Property of f(S). Let ®
be an empty set; L, J, R be three sets s.t., T C J, and RNJ = ®.
The following facts hold for f(S):

PL: f(®) = 0;
P2: f(S) is monotonically non-decreasing, i.e., (Z) < f(J);
P3: f(8) is submodular, i.e., (ZUR) —f(Z) > ATUR)—AT).

PROOF of P1. It is obviously held by the definition of f(S). O
PROOF of P2. Let T = J \ Z. Substituting eq (3) into f(7) —
f(Z) and canceling the common terms, we have

1) — £(Z)
= 2> 1) = > B@,5)r() - Y. > B(i,5)r(j)
€T €L jET €T jeT
= O_r() - D> B5)r()
JET JET €T
+O r(i) = > > B, 5)r(h)) “
€T €T jeT

Recall that the matrix B is a column-wise stochastic matrix (i.e.,
each column of B sums up to 1). The first half of eq (4) satisfies

O _r() =D B, i)r()
JET JET €T
= Y r()(1-> B(,5)
JET =
= > () _B(i,4) >0 5)
JET i¢T
For the second half of eq (4), we have that

Qor® =D B(4)r())

€T €T jET

= S06) - 3 B, j)r()
€T JjET

= > ) B@,j)r() =0 6)
€T j&T



The last equality in eq (6) is due to the fact that r = Br, and each
element in r is non-negative.
Putting eq (4)-(6) together, we have that f(7) > f(Z), which
completes the proof of P2. m|
PROOF of P3. Again, let 7 = J \ Z. Substituting eq (4) into
(fZUR)—£(Z)) — (f(JUR)—£(J)) and canceling the common
terms, we have

((ZUR)—1(1)) - ((TUR) - £(T))

O BG)rG) = > > B(i,j)r(j))

€T JER i€Z jER

O D BlrG) - >, > B@5)r())

IER jETJUR i€ER JEIUR

SO BTG + Y Y B5)r() =0
JERIET i€ERFET

Therefore, we have that f(Z U R) — f(Z) > f(J UR) — f(J),
which completes the proof of P3. o

4. THE PROPOSED ALGORITHM

In this section, we address Problem 2. Here, given the initial
query vector p and the budget k, we want to find a subset of k
nodes that maximizes the goodness measure defined in eq (3). We
first analyze the main challenges in optimizing eq (3); and then
present the proposed algorithm DRAGON, followed by some theo-
retical analysis and discussion.

4.1 Challenges

Problem 2 is essentially a subset selection problem to find the
optimal k nodes that maximize eq (3). Theorem 1 indicates that it
is not easy to find the exact optimal solution of Problem 2 - it is NP-
hard to maximize a monotonic submodular function if the function
value is O for an empty set [18]. For instance, a straight-forward
method would take exponential enumerations (}) to find the exact
optimal k£ nodes, which is not feasible in computation even for a
medium size graph (e.g., with a few hundred nodes).

We can also formulate Problem 2 as a binary quadratic program-
ming problem. Let x,,x1 be a binary indicator vector (x(7) = 1
means node 7 is selected in the subset S, and 0 means it is not
selected). Problem 2 can be expressed as the following binary
quadratic programming problem:

x'Dx

x(1) € {0,1}(i =1, ...,n)
> x() =k

=1

where D = (B—2I,,x,,)diag(r), I, x~ is an identity matrix of size
n x n, and diag(r) is a diagonal matrix with r(¢,4)(i = 1, ...,n)
being the diagonal elements.

Eq. (7) is still not easy to solve due to (1) the binary constrains on
the variable x and (2) the quadratic term in the objective function.
If we relax the binary constrainonxas 0 < x(¢) < 1( = 1, ..., n),
we can solve the relaxed problem by standard quadratic program-
ming packages. We refer to this strategy as ‘Lin-QP’. However,
there are two major limitations of this method. First of all, we do
not know what the gap is between eq. (7) and its relaxed version.
Therefore, it is not clear how good the final solution is in terms of
maximizing the original goodness measure (eq (3)) even if we can
solve the relaxed problem optimally®. Second, most, if not all, of
the existing quadratic programming packages require polynomial

min

Subject to:

)

21t is worth pointing out that it is not even easy to find an opti-
mal solution for the relaxed problem by quadratic programming
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complexity in computation. This makes this strategy very slow, or
even infeasible, for a graph with more than a few thousand nodes.

Another possible solution for eq. (7) is to remove the quadratic
term in the objective function as follows. Starting from some ini-
tial indicator vector X, we iterate between the following two steps:
(1) approximate the objective function in eq. (7) by its first order
Taylor expansion around X; and (2) update X by solving a binary
integer programming problem for the approximated objective func-
tion, which is linear wrt x. We refer to this strategy as ‘Ite-BIP’.
However, the two main issues still exist: (1) it is not clear how
such approximation will downgrade the overall optimization per-
formance; (2) the binary integer programming itself, again, requires
polynomial time, which does not scale to large graphs.

4.2 The Proposed Dracon Algorithm

Our proposed DRAGON algorithm is presented in Alg. 1. In step
1, we compute the ranking vector r (e.g., by the power method,
etc). Then after some initializations (steps 2-5), we select k nodes
one-by-one as follows. At each time, we compute the score vector
s in step 7. Then, we select one node with the highest score in the
vector s and add it to the subset S (steps 8-9). After that, we use the
selected node to update the two reference vectors u and v (steps 10-
11). Note that ‘®’ denote the element-wise product between two
matrices/vectors. Intuitively, the score vector s keeps the marginal
contribution of each node for the goodness measure given the cur-
rent selected subset S. From step 7, it can be seen that at each
iteration, the values of such marginal contribution either keeps un-
changed or decreases. This is consistent with P3 of Theorem 1 - as
there are more and more nodes in the subset S, the marginal con-
tribution of each node is monotonically non-increasing. It is worth
pointing out that we use the original normalized adjacency matrix
A, instead of the ‘Google matrix’ B in Alg. 1. This is because for
many real graphs, the matrix A is often very sparse, whereas the
matrix B might not be’. In the case B is dense, it is not efficient in
either time or space to use B in Alg. 1.

In Alg. 1, although we try to optimize a goodness measure that is
not affected by the ordering of different nodes in the subset, we can
still output an ordered list to the user based on in which iteration
these nodes are selected - earlier selected nodes in Alg. 1 are placed
at the top of the resulting top-k ranking list. This ordering naturally
meets the diminishing returns need when the user is seeking for a
diverse top-k ranking list as we analyzed in subsection 3.1.

4.3 Proofs and Analysis

Here, we analyze the optimality as well as the complexity of the
proposed algorithm. We show that our DRAGON leads to a near-
optimal solution, and at the same time it enjoys linear scalability
in both time and space.

Optimality. The optimality of the proposed DRAGON is given
in Lemma 1. According to Lemma 1, our DRAGON is near-optimal
- its solution is within a fixed fraction (1 — 1/e & 0.63) from the
global optimal one. Given the hardness of Problem 2, such near-
optimality is acceptable in terms of optimization quality.

LEMMA 1. Near-Optimality of DRAGON. Let S be the subset
found by DRAGON; |S| = k; and S* = argmax s _,f(S). We
have that f(S) > (1—1/e)f(S™), where e is the base of the natural
logarithm.

PROOF. Omitted for Brevity O

because the matrix D (1) might be asymmetric and (2) is not al-
ways semi-positive definite.

3To see this, notice that B is a full matrix if p is uniform.



Algorithm 1 DRAGON for Problem 2

Input: The row-normalized adjacency matrix A of the graph, the
damping factor c, the query vector p, and the budget k;

Output: A subset of k£ nodes S.

1: Compute the ranking vector r: r = cA'r + (1 — ¢)p;
2: Initialize S as the empty set; set u = v = Opx1;

3: fori=1:ndo

4:  Initialize §(7) = (2 — cA(4,7) — (1 — o)p(d))r(4);
5: end for

6: foriter =1: kdo

7:  Compute the score vectors =8§ —u r — V;

8: Findi = argmax;s(j)(j =1,...,n;5 ¢ S);

9:  Add node i into S;
10:  Update u + u+ cA(:,1) + (1 — ¢)p(¢) Lnx1;
11:  Update v < v + cA’(:,4)r(i) + (1 — c)r(i)p;
12: end for

13: Return the subset S

Time Complexity. The time complexity of the proposed DRAGON

is given in Lemma 2. According to Lemma 2, our DRAGON has
linear time complexity wrt the size of the graph. Therefore it is
scalable to large graphs in terms of computational time.

LEMMA 2. Time Complexity of DRAGON. The time complex-
ity of Alg. 1 is O(m + nk).

PROOF. Omitted for brevity. O

We would like to point out that the proposed DRAGON can be
further sped up. Firstly, notice that the O(m) term in Lemma 2
comes from computing the ranking vector r (step 1) by the most
commonly used power method. There are a lot of fast methods for
computing r, either by effective approximation (e.g., [37]), or by
parallelism (e.g. [13]). These methods can be naturally plugged in
our DRAGON, which might lead to further computational savings.
Secondly, the O(nk) term in Lemma 2 comes from the greedy se-
lection step in steps 6-12. Thanks to the monotonicity of f(S) as we
show in Theorem 1, we can use the similar lazy evaluation strategy
as [20] to speed up this process, without sacrificing the optimiza-
tion quality.

Space Complexity. The space complexity of the proposed DRAGON

is given in Lemma 3. According to Lemma 3, our DRAGON has /in-
ear space complexity wrt the size of the graph. Therefore it is also
scalable to large graphs in terms of space cost.

LEMMA 3. Space Complexity of DRAGON. The space com-
plexity of Alg. 1is O(m + n + k).

PROOF. Onmitted for brevity.

4.4 Discussion - Comparisons

In literature, there exist two other methods to encourage diversity
in the top-k ranking list for personalized PageRank. Here, we make
a comparison in terms of optimality, convergence, and scalability
of different methods. ARW [42] is based on an intuitive heuristic
by greedily selecting the highest ranked node and setting it as the
absorbing state. From theoretical point of view, it is not clear what
ARW [42] tries to optimize. And also, it requires a matrix inverse
of the same size of the graph, which is not scalable to large graphs.
RRW [27] is based on vertex reinforced random walk [31]. Com-
pared with ARW [42], it makes an important step forward by pro-
viding some optimization explanations via defining a time-varying
objective function that changes at each iteration step. However, it is
still not clear what overall metric it tries to measure; and how good
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Table 2: Comparison of different methods. Our proposed
DRAGON is the only method that leads to a near-optimal so-

lution with linear scalability.
Method Measure | Optimality | Scalability | Convergence |
ARW [42] NA NA No Yes
RRW [27] Partial NA Yes NA
DRAGON Yes Near-optimal Yes Yes

its optimization solution is. Moreover, RRW [27] introduced some
modifications and approximation techniques to the original vertex
reinforced random walk, and it is not clear how the modified vertex
reinforcement random walk converges®*.

5. EXPERIMENTAL EVALUATIONS

In this section, we provide empirical evaluations for the proposed
DRAGON. Our evaluations mainly focus on (1) the effectiveness
and (2) efficiency of the proposed DRAGON.

5.1 Experimental Setup

Data sets. We use the DBLP publication data® to construct a
co-authorship network, where each node is an author and the edge
weight is the number of the co-authored papers between the two
corresponding persons. Overall, we have n = 418,236 nodes
and m 2,753,798 edges. We also construct much smaller
co-authorship networks, using the authors from only one confer-
ence (e.g., KDD, SIGIR, SIGMOD, etc.). For example, KDD is the
co-authorship network for the authors in the ‘KDD’ conference.
These smaller co-authorship networks typically have a few thou-
sand nodes and up to a few tens of thousands edges. We also con-
struct the co-authorship networks, using the authors from multiple
conferences (e.g., KDD+SIGIR). For these graphs, we denote them
as Sub(n,m), where n and m are the numbers of nodes and edges in
the graph, respectively.

Machine configurations. For the computational cost and scala-
bility, we report the wall-clock time. All the experiments ran on the
same machine with four 2.4GHz AMD CPUs and 48GB memory,
running Linux (2.6 kernel). For all the quantitative results, we ran-
domly generate a query vector p and feed it into different methods
for a top-k ranking list with the same length. We repeat it 100 times
and report the average.

Evaluation criteria. To the best of our knowledge, there is no
universally accepted measure for diversity. In [27], the authors sug-
gested an intuitive notion based on the density of the induced sub-
graph from the original graph A by the subset S. The intuition is as
follows: the lower the density (i.e., the less 1-step neighbors) of the
induced subgraph, the more diverse the subset S. Here, we general-
ize this notion to the ¢-step graph in order to also take into account
the effect of those in-direct neighbors. Let Sign(.) be a binary func-
tion operated element-wise on a matrix, i.e., Y = Sign(X), where
Y is a matrix of the same size as X, Y (¢,5) = 1if X(4,5) > 0,
Y (4,5) = 0 otherwise. We define the t-step connectivity matrix
C'as C' = Sign(}°!_, A%). Thatis, C*(i,5) = 1 (0) means
that node ¢ can (cannot) reach node j on the graph A within ¢-
steps/hops. With this C* matrix, we define the diversity of a given
subset S as eq (8). Here, the value of Div(t) is always between
0.5 and 1 - higher means more diverse. If all the nodes in S are
reachable from each other within ¢-steps, we say that the subset S

“Even if it converges, its stationary state might not be unique ac-
cording to [31].
Shttp://www.informatik.uni-trier.de/~ley/db/



is the least diverse (Div(¢) = 0.5). On the other extreme, If all the
nodes in S cannot reach each other within ¢-steps, the subset S is
the most diverse (Div(t) = 1).

o 1
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For the task of top-k ranking, the notion of diversity alone, though
important, might not be enough for the information need. For ex-
ample, if we simply randomly select k& nodes as the top-k ranking
list, these k£ nodes might not connected with each other at all given
that the length of the ranking list £ is usually much smaller than
the number of nodes n in the graph. Therefore, it has a high di-
versity. However, it is unlikely that such a ranking list can well
fit the user’s information need since each of them might have very
low relevance score. In other words, a diversified top-k ranking list
should also have high relevance. That said, we will mainly focus
on evaluating how different methods balance between the diversity
and the relevance.

Notice that the relevance score for each individual node is often
very small on large graphs (since the L1 norm of the ranking vector
is 1). To make the two quantities (diversity vs. relevance) compa-
rable with each other, we need to normalize the relevance scores.
Let S be the top-k ranking list by the original personalized PageR-
ank, we define the normalized relevance score for a given subset
S(|S| = k) as eq (9). Since the personalized PageRank always
gives the k most relevant nodes, the Rel defined in eq (9) is always
between 0 and 1 - higher means more relevant.

Zies r(i)
EieS I‘(’L)

5.2 Effectiveness of Dracon: Case Studies

Let us start with an illustrative example to gain some visual intu-
itions. In Fig. 1, we show a fictitious co-authorship network, where
each node corresponds to an author (e.g., John, Smith, etc), and the
edge weight is the number of the co-authored papers. There are
three communities in this network (e.g., DM, DB and [R). From
Fig. 1, we can see that node 1 has very strong connections to the
DM community. In other words, DM might be his/her major re-
search interest. In addition, s/he also has some connections to the
IR and DB communities. Given the budge £ = 3, personalized
PageRank returns all the three nodes (nodes 2, 3 and 5) from DM
community which is consistent with the intuition since personal-
ized PageRank solely focuses on the relevance. In contrast, the
proposed DRAGON returns nodes 2, 6, and 10, each of which is
still relevant enough to the query node 1. At the same time, they
are diversified from each other, covering the whole spectrum of
his/her research interest (DM, DB, and IR).

We also conduct cast studies on real graphs. We construct a
co-authorship networks from SIGIR (the major conference on in-
formation retrieval) and /CML (the major conference on machine
learning). We issue a query to find the top-/0 co-authors for Prof.
Yiming Yang. The results are shown in Fig. 2. We compare it with
the original personalized PageRank. Yiming Yang is a professor
from Carnegie Mellon University; and she has broad interest in in-
formation retrieval and machine learning. From Fig. 2, we have
the following observations. Firstly, both DRAGON and personal-
ized PageRank share the same authors for the top-3 returned au-
thors, indicating that DRAGON also captures those highly relevant
authors wrt the querying author. Secondly, our DRAGON returns
a more diverse list of authors. For example, although ChengXiang
Zhai is not a co-author of Yiming Yang, they shares a lot of research
interest in information retrieval, and has a lot of indirect connec-
tions through other /R people. In contrast, the existence of some

Div(t)

®

Rel = 9
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Figure 1: An illustrative example of a co-authorship network
with three communities. Given the query node 1 and the bud-
get £ = 3, the proposed DRAGON returns three relevant and
diversified nodes (2, 6, and 10, in black). In contrast, person-
alized PageRank returns nodes 2, 3 and 5 (all from the DM
community).

authors in the ranking list by personalized PageRank is somehow
redundant, in terms of helping the user to understand Prof. Yiming
Yang’s whole collaboration network. For example, Prof. Alex G.
Hauptmann is also from Carnegie Mellon University. Although, he
has a lot of co-authored papers with Yiming Yang, they are also co-
authored with Jian Zhang and Rong Jin. Therefore, given that Jian
Zhang and Rong Jin are already in the ranking list, his existence
does not provide much marginal information about Yiming Yang’s
collaboration network. As a quantitative indicator, the average de-
gree of the induced subgraph by DRAGON is only 2.8, which is
much lower (i.e., more diverse) than that by personalized PageR-
ank (4.3). Finally, notice that for some authors, although they show
up in both lists, their positions in the ranking list are different. For
example, Jian-Yun Nie shows at the 4" and the 8" positions in the
two ranking lists, respectively. This is because Jian-Yun Nie makes
the top-4 authors more diverse compared with Thomas Pierce, al-
though its individual relevance score is lower than the latter.

5.3 Comparison with Alternative Methods for
Diversified Ranking on Graphs

We compare the proposed DRAGON with ARW [42] and RRW [27],
both of which also aim to improve the diversity of personalized
PageRank. We skip the comparison with MMR [6] for brevity
since [27] shows that its performance is not as good as RRW for
the graph-type data. For RRW [27], it has two variants based on
different approximation methods it actually uses: the one based on
the cumulative estimation (referred to as ‘RRW-a’) and the other
one based on the pointwise estimation (referred to as ‘RRW-b’).

First, let us compare how different methods balance between
the relevance and the diversity. Fig. 3 shows the results on the
NIPS co-authorship network. We test with different budgets (k =
10, 20, 30, 40, 50, 100). In Fig. 3, Div(1) means that we only con-
sider 1-step neighbors to measure the diversity (i.e., setting ¢t = 1
in eq (8)). Div(2) means that we consider both 1-step and 2-step
neighbors (i.e., setting ¢t = 2 in eq (8)). We only present the re-
sults by RRW-a since RRW-b gives similar results. From Fig. 3,
we can see that all the three methods are effective to improve the
diversity. The proposed DRAGON achieves a better balance be-
tween the relevance and the diversity. For ARW, although it gives
the highest diversity score, its (normalized) relevance score is too
low - only about half of the other two methods. This is because
in ARW, only the first node is selected according to the relevance;
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Figure 2: Top-10 authors for Prof. Yiming
Yang. Our DRAGON return a relevant, but
more diverse list of authors. The difference
between the two lists is highlighted in black.

and all the remaining (k-1) are selected by diversity. As for RRW-
a, both its relevance and diversity scores are lower than the pro-
posed DRAGON. It is interesting to notice from Fig. 3(b) that the
diversity of RRW-a drops a lot when it is measured by within 2-
step neighbors (i.e., Div(2)). This is consistent with the intuition
of RRW. In RRW (both RRW-a and RRW-b), it achieves the diver-
sity by encouraging 1-step neighboring nodes to compete with each
other. Consequently, the density of its within 1-step induced sub-
graph might low (i.e., high diversity), it is not necessary the case
for the within ¢-step (¢ > 2) induced subgraph.

In order to test how the overall performance of different meth-
ods vary across different data sets, we take the average between
relevance and diversity scores. The results are presented in Fig. 4,
using four different co-authorship networks (SIGMOD, NIPS, SI-
GIR, SIGGRAPH). For the space limitation, we omit the results
when the diversity is measured by within 1-steps neighbors, which
is similar as the results by within 2-steps neighbors. It can be seen
that the proposed DRAGON consistently performs the best.

5.4 Comparison with Alternative Optimiza-
tion Methods

Here, we evaluate the effectiveness and the efficiency of the pro-

posed DRAGON in terms of maximizing the goodness measure f(S).

We compared it with the two methods we introduced in subsec-
tion 4.1. We also compare it with two other heuristics. The first
method (referred to as ‘Heuristic1’) starts with generating a candi-
date pool (e.g., the top 10 X k most relevant nodes), picks one seed
node, and then repeatedly adds the most dis-similar (measured by
A) node into the ranking list from the candidate pool. The second
method (referred to as ‘Heuristic2’) also starts with generating a
candidate pool, puts all the nodes from candidate pool in the list,
and then repeatedly drops a most similar (measured by A) node
from the list.

First, let us evaluate how the different methods balance between
the optimization quality (measured by f(S)) and the speed (mea-
sured by wall-clock time). Fig. 5 shows the results from the co-
authorship network of NIPS and KDD conferences with the budget
k = 20, where f(S) is normalized by the highest one among dif-
ferent methods. It can be seen that the proposed DRAGON is the
best - it leads to the highest optimization quality (i.e., highest f(S))
with the least amount of wall-clock time. Notice that the y-axis is
in logarithm scale.

We also conduct experiments on the co-authorship network con-
structed from multiple conferences. Fig. 6 shows the results on
these data sets with the budget k¥ = 20. Here Sub(n,m) means a
co-authorship network with n nodes and m edges. We stop the
program if it takes more than 100,000 seconds (i.e., more than
10 days). It can be seen from Fig. 6 that the proposed DRAGON
is consistently best across all the different data sets - it leads to
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Figure 3: Diversity and Relevance trade-off of different methods.

highest optimization quality (i.e., highest f(S)) with least amount
of wall-clock time. The normalized f(S) for ‘Lin-QP’ is missing
for Sub(24K,114K) because it fails to finish within 100,000 sec-
onds. This indicates that it is not feasible for large graphs. For the
smaller graphs, ‘Lin-QP’ leads to slightly lower f(S) than the pro-
posed DRAGON; but it requires 3-5 orders of magnitude wall-clock
time. For all the other comparative methods, they lead to worse
optimization quality with longer wall-clock time.

5.5 Scalability

We also evaluate the scalability of DRAGON. When we evaluate
the scalability wrt the number of the nodes in the graph, we fix the
number of edges and vice versa. The results in Fig. 7 are consis-
tent with the complexity analysis in subsection 4.3 - the proposed
DRAGON scales linearly wrt both n and m, which means that it is
suitable for large graphs.

average wall-clock time (sec.)
average wall-clock time (sec)

15 2 35 7

x10°

05 2 25

x10°

(b) Time vs. # of edges

Figure 7: Scalability of DRAGON. The proposed DRAGON
scales linearly wrt the size of the graph.

25 3 ¥ i
#0f nodes #of edges

(a) Time vs. # of nodes

6. RELATED WORK

In this section, we review the related work, which can be cate-
gorized into four parts: ranking on graphs, diversity, set-level opti-
mization for data mining and general graph mining.

Ranking on Graphs. Personalized PageRank is one of the most
fundamental and most widely used ranking methods on graphs. It
has been successfully applied to many high-impact applications [30,
11].Many other ranking methods on graphs are built upon, and/or
share the similar ideas as personalized PageRank, such as Rala-
tionalRank [9, 3], random walk with restart [37], SimRank [22],
etc. Because of its generality and wide applicability, we choose
Personalized PageRank as the starting point of our method. Other
ranking methods on graphs include HITS [15], electricity-based
methods [17], etc. There also exist a lot of work to speed-up the
computation of personalized PageRank, such as [37, 33, 13]. It
is worth pointing out that all these fast algorithms can be naturally
plugged into the proposed DRAGON to gain further savings in com-
putational time.
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Figure 5: Wall-clock time vs. quality on the
NIPS+KDD co-authorship Network. The y-
axis is in logarithm scale. The proposed
DRAGON is the best. It has the highest f(S)
with the least amount of time.

Diversity. It is now widely recognized that diversity is a highly
desired property in many data mining tasks, such as expertise and
legal search [32], recommendation system [43], blog filtering [7],
document summarization [6], etc. It is a powerful tool to address
the uncertainty and ambiguity; and/or to cover the different aspects
of an information need [32]. For the graph-type data, [42] was
among the first to address the diversified ranking on graphs. [27]
proposed to balance between the relevance and diversity based on
the vertex reinforcement random walk on graphs . However, they
suffer from some important subtle issues as we show in subsec-
tion 4.4. There are also a lot of algorithms to improve the diversity
for other types of data (e.g., document, etc), including [6, 41, 21],
etc.

Set-level Optimization for Data Mining. In the recent years,
set-level optimizationhas been playing a very important role in many
data mining tasks. Many set-level optimization problems are NP-
hard. Therefore, it is difficult, if not impossible, to find the global

o
SUb(2K7K) Sub(SK.37K)  Sub(9K37K)  Sub(11K45K) Sub(24K.114K)

(a) Comparison on the normalized f(S)
(higher is better)

optimal solutions. However, if the function is monotonic sub-modular

with O function value for the empty set, a greedy strategy can lead
to a provably near-optimal solution [18]. This powerful strategy
has been recurring in many different settings, e.g., immunization,
outbreak detection, blog filtering, sensor placement, influence max-
imization, structure learning, etc. (See [18] for a comprehensive re-
view). In this paper, we introduce a new type of submodular func-
tion tailored for diversified ranking on large graphs.

General Graph Mining. There is a lot of work on graph mining.
Representative works include pattern and law mining [5], frequent
substructure discovery [39], compression [26], fraud and anomaly
detection [29], community mining and graph partition [14, 34, 25,
40], social action tracking [36], user click-through modeling [1, 2],
collaborative filtering [16, 8, 35, 12], term formation [19], network
classification [28], link prediction [23, 24, 4], etc.
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Figure 6: Comparison of different optimization methods. Our DRAGON(the left most
one) always leads to the highest f(S), with the least amount of time. Best viewed in color.

7. CONCLUSION

In this paper, we address the diversified ranking on large graphs
from an optimization point of view. To the best of our knowledge,
this is the first work for diversified ranking on large graphs that (1)
has a clear optimization formulation (see eq. (3)); (2) finds prov-
ably near-optimal solutions (see Theorem 1 and Lemma 1); and (3)
enjoys the linear scalability (see Lemma 2 and Lemma 3). Our ex-
perimental evaluations on real graphs validate that our method is
(1) indeed effective to balance the relevance and the diversity in
top-k ranking; and (2) scalable to large graphs.

8. ACKNOWLEDGEMENT

Research was sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement Number W91 1NF-
09-2-0053. The views and conclusions contained in this document
are those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation here on.

9. REFERENCES

[1] C.L. 0001, F. Guo, and C. Faloutsos. Bbm: bayesian
browsing model from petabyte-scale data. In KDD, pages
537-546, 2009.
D. Agarwal, A. Z. Broder, D. Chakrabarti, D. Diklic,
V. Josifovski, and M. Sayyadian. Estimating rates of rare
events at multiple resolutions. In KDD, pages 16-25, 2007.
A. Angel, S. Chaudhuri, G. Das, and N. Koudas. Ranking
objects based on relationships and fixed associations. In
EDBT 09, pages 910-921, 2009.

(2]

(3]



[4] L. Backstrom and J. Leskovec. Supervised random walks:
predicting and recommending links in social networks. In
WSDM, pages 635-644, 2011.

[5] A.Broder, R. Kumar, F. Maghoull, P. Raghavan,

S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph
structure in the web: experiments and models. In WWW
Conf., 2000.

[6] J. G. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR, pages 335-336, 1998.

[7] K. El-Arini, G. Veda, D. Shahaf, and C. Guestrin. Turning
down the noise in the blogosphere. In KDD, pages 289-298,
2009.

[8] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and
M. J. Pazzani. An energy-efficient mobile recommender
system. In KDD, pages 899-908, 2010.

[9] F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. In VLDB, pages 552-563, 2004.

[10] G. H. Golub and C. F. V. Loan. Matrix Perturbation Theory.
The Johns Hopkins University Press, 1996.

[11] T. H. Haveliwala. Topic-sensitive pagerank. WWW, pages
517-526, 2002.

[12] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite,
and C. M. Kadie. Dependency networks for collaborative

filtering and data visualization. In UAI, pages 264-273, 2000.

[13] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system. In /ICDM, pages 229-238,
2009.

G. Karypis and V. Kumar. Multilevel -way hypergraph

partitioning. In DAC, pages 343-348, 1999.

J. M. Kleinberg. Authoritative sources in a hyperlinked

environment. J. ACM, 46(5):604—632, 1999.

Y. Koren. Collaborative filtering with temporal dynamics. In

KDD, pages 447-456, 2009.

Y. Koren, S. C. North, and C. Volinsky. Measuring and

extracting proximity in networks. In KDD, pages 245-255,

2006.

A. Krause and C. Guestrin. Beyond convexity -

submodularity in machine learning. In /CML, 2008.

T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in

social networks. In KDD, pages 467-476, 2009.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M.

VanBriesen, and N. S. Glance. Cost-effective outbreak

detection in networks. In KDD, pages 420429, 2007.

[21] L. Li, K. Zhou, G.-R. Xue, H. Zha, and Y. Yu. Enhancing
diversity, coverage and balance for summarization through
structure learning. In WWW, pages 71-80, 2009.

[22] P.Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair
simrank computation. In SDM, pages 571-582, 2010.

[23] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In Proc. CIKM, 2003.

[14]
[15]
(16]

(17]

(18]
(19]

[20]

1036

[24] R. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New
perspectives and methods in link prediction. In KDD, pages
243-252, 2010.

[25] A.S.Maiya and T. Y. Berger-Wolf. Sampling community
structure. In WWW, pages 701-710, 2010.

[26] H. Maserrat and J. Pei. Neighbor query friendly compression
of social networks. In KDD, pages 533-542, 2010.

[27] Q. Mei, J. Guo, and D. R. Radev. Divrank: the interplay of
prestige and diversity in information networks. In KDD,
pages 1009-1018, 2010.

[28] J. Neville, B. Gallagher, and T. Eliassi-Rad. Evaluating
statistical tests for within-network classifiers of relational
data. In ICDM, pages 397-406, 2009.

[29] C. C. Noble and D. J. Cook. Graph-based anomaly detection.
In KDD, pages 631-636, 2003.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd. The

PageRank citation ranking: Bringing order to the web.

Technical report, Stanford Digital Library Technologies

Project, 1998. Paper SIDL-WP-1999-0120 (version of

11/11/1999).

R. Pemantle. Vertex reinforced random walk. Prob. Th. and

Rel. Fields, pages 117-136, 1992.

F. Radlinski, P. N. Bennett, B. Carterette, and T. Joachims.

Redundancy, diversity and interdependent document

relevance. SIGIR Forum, 43(2):46-52, 2009.

P. Sarkar and A. W. Moore. Fast nearest-neighbor search in

disk-resident graphs. In KDD, pages 513-522, 2010.

V. Satuluri and S. Parthasarathy. Scalable graph clustering

using stochastic flows: applications to community discovery.

In KDD, pages 737-746, 2009.

[35] H. Shan and A. Banerjee. Generalized probabilistic matrix
factorizations for collaborative filtering. In ICDM, pages
1025-1030, 2010.

[36] C. Tan,J. Tang, J. Sun, Q. Lin, and F. Wang. Social action
tracking via noise tolerant time-varying factor graphs. In
KDD, pages 1049-1058, 2010.

[37] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with
restart and its applications. In /ICDM, pages 613-622, 2006.

[38] L. Wu. Social network effects on performance and layoffs:

Evidence from the adoption of a social networking tool. Job

Market Paper, 2011.

D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed

frequent-pattern sets. In VLDB, pages 709-720, 2005.

X. Yin, J. Han, and P. S. Yu. Cross-relational clustering with

user’s guidance. In KDD, pages 344-353, 2005.

Y. Yue and T. Joachims. Predicting diverse subsets using

structural svms. In ICML, pages 1224-1231, 2008.

X. Zhu, A. B. Goldberg, J. V. Gael, and D. Andrzejewski.

Improving diversity in ranking using absorbing random

walks. In HLT-NAACL, pages 97-104, 2007.

C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.

Improving recommendation lists through topic

diversification. In WWW, pages 22-32, 2005.

(31]

(32]

[33]

[34]

(39]
[40]
[41]

(42]

[43]




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




