
Predicting Long-Term Impact of CQA Posts:
A Comprehensive Viewpoint

Yuan Yao
State Key Laboratory for Novel

Software Technology, China
yyao@smail.nju.edu.cn

Hanghang Tong
Arizona State University, USA

htong6@asu.edu

Feng Xu and Jian Lu
State Key Laboratory for Novel

Software Technology, China
{xf,lj}@nju.edu.cn

ABSTRACT
Community Question Answering (CQA) sites have become valu-
able platforms to create, share, and seek a massive volume of hu-
man knowledge. How can we spot an insightful question that would
inspire massive further discussions in CQA sites? How can we de-
tect a valuable answer that benefits many users? The long-term
impact (e.g., the size of the population a post benefits) of a ques-
tion/answer post is the key quantity to answer these questions. In
this paper, we aim to predict the long-term impact of questions/answers
shortly after they are posted in the CQA sites. In particular, we pro-
pose a family of algorithms for the prediction problem by modeling
three key aspects, i.e., non-linearity, question/answer coupling, and
dynamics. We analyze our algorithms in terms of optimality, cor-
rectness, and complexity. We conduct extensive experimental eval-
uations on two real CQA data sets to demonstrate the effectiveness
and efficiency of our algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—Data min-
ing

Keywords
Question answering; long-term impact; impact correlation

1. INTRODUCTION
Community Question Answering (CQA) sites, such as Stack Over-

flow1, Yahoo! Answers2, AnswerBag3, and Ask.com4, have be-
come valuable platforms to create, share, and seek a massive vol-
ume of human knowledge. How can we spot an insightful question
that would inspire massive further discussions in these CQA sites?
How can we detect an valuable answer that benefits many users?
The long-term impact of a question/answer post, which is the size

1http://stackoverflow.com/
2http://answers.yahoo.com/
3http://www.answerbag.com/
4http://www.ask.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623649.

of population it benefits in total, is the key quantity to answer these
questions. How can we predict the Long-term Impact of a Post (ei-
ther a question or an answer) shortly after it is posted on the CQA
site? This, which we refer to as the LIP problem in this paper, is
an essential task for the prosperity and sustainability of the CQA
ecosystem that benefits all types of its users, including the infor-
mation producers, spreaders, and consumers.

Despite its importance, it is not an easy task to predict the long-
term impact of question/answer posts. Consequently, there are very
few dedicated, existing tools for this problem (see Section 6 for a
review). We summarize two major challenges below.

The first challenge lies in the multi-aspect of the long-term im-
pact of question/answer posts. The user rating/voting mechanism
within most of the CQA sites often provides a good measure of
the long-term impact of CQA posts. For example, the voting score
in Stack Overflow directly tells how many site users find the cor-
responding question/answer is beneficial to him/her. This naturally
leads us to cast the LIP problem as a (supervised) data mining prob-
lem. Nonetheless, this problem has its own characteristics, making
any off-the-shelf data mining algorithm sub-optimal for this prob-
lem. To be specific, while each of the following aspects might af-
fect the long-term impact of question/answer posts, they require
different treatments in the data mining algorithms. How can we
build a comprehensive model to capture all these aspects to maxi-
mally boost the prediction accuracy?

• A1. Non-linearity. Both the contextual features (e.g., the rep-
utation of the user who issues the question, etc.) and the con-
tent of the post (e.g., keywords, etc.) might affect its long-
term impact; and the effect of each feature might be beyond
the simple linear-relationship.

• A2. Coupling between questions and answers. Intuitively
(which was also confirmed in our tech report [29]), the long-
term impact of the questions might be correlated with that of
its associated answers. Yet, the questions and answers may
reside in different feature spaces.

• A3. The dynamics (of training data sets). While CQA sites
usually offer a large size of training data set, it may arrive in
a dynamic (stream-like) way for the mining algorithms.

The second challenge is the computation. Each of the above
aspects (non-linearity, the question-answer coupling, and the dy-
namics) will add the extra complexity into the mining process. For
example, while many machine learning algorithms (e.g., kernel re-
gression, support vector regression, etc.) exist to capture the non-
linearity between the features and outputs (long-term impact score
in our case), they typically require at least O(n2) in time and space
complexity, where n is the total number of the training examples.

Moreover, when the new training examples arrive in a stream, ever-
growing fashion, even an O(n) algorithm might be too expensive.
How can we make our prediction algorithms scalable to millions
of CQA posts and adaptive to the newly arrived training examples
over time?

In this paper, we aim to address both challenges by proposing a
family of algorithms for predicting the long-term impact of ques-
tion/answer posts. Our algorithms enjoy three key advantages. First,
they are comprehensive in the sense that our model naturally cap-
tures all the above three key aspects (i.e., non-linearity, coupling,
and dynamics) that matter with the long-term impact of a post. Sec-
ond, they are flexible and general, being able to handle the special
cases where only a fraction of these aspects are prominent. For
example, in some CQA sites, we might be only interested in the
prediction of answers posts (such as Yahoo! Answers), and/or the
features may have a linear effect on the post impact, etc. Third, they
are scalable and adaptive to the newly arrived examples. For ex-
ample, one of our algorithms (LIP-KIMAA) has a sub-linear com-
plexity in both time and space. On the Stack Overflow data set
with more than 3 million posts, this LIP-KIMAA algorithm can
build and update our model in seconds, while straightforward ap-
proaches would take hours.

The main contributions of this paper are summarized as follows:

• A family of novel algorithms for the prediction of the long-
term impact of questions and answers in CQA sites.

• Proofs and analysis, showing the optimality, correctness, and
computational efficiency, as well as the intrinsic relationship
among different algorithms.

• Extensive empirical evaluations, demonstrating effectiveness
and efficiency of our algorithms. For example, compared
with alternative choices (e.g., KRR [25]), one of our pro-
posed algorithm (LIP-KIMAA) (1) leads up to 35.8% im-
provement in prediction accuracy; (2) and is up to 390x faster
while enjoying sub-linear scalability.

The rest of the paper is organized as follows. Section 2 describes
the problem definition. Section 3 presents the proposed algorithms.
Section 4 discusses some variants. Section 5 presents the experi-
mental results. Section 6 reviews related work, and Section 7 con-
cludes the paper.

2. PROBLEM STATEMENT
In this section, we first define the LIP problem, and then present

its solution space to illustrate the relationship between our proposed
algorithms and the existing work.

2.1 Problem Definitions
Table 1 lists the main symbols we use throughout the paper.

For convenience, we use bold capital letters for existing matri-
ces/vectors at time t, and bold lower case letters for newly arrived
matrices/vectors at time t + 1. We use superscript (i.e., q or a) to
distinguish questions and answers, and use subscript (i.e., t, t + 1,
etc.) to indicate time. For example, we use Fq

t to denote the feature
matrix for questions at time t, and fq

t+1 to denote the feature matrix
of newly arrived questions at time t+1. Each row of Fq

t and fq
t+1 con-

tains the feature vector for the corresponding question. Similarly,
we use Yq

t to denote the vector of impact scores at time t, and yq
t+1

to denote the vector of impact scores from new questions at time
t + 1. Following conventions, we use calligraphic letter Kq

t and
Ka

t to denote the kernel matrix for questions and answers at time
t. We will omit the subscript when the meaning of matrices/vectors

Table 1: Symbols.
Symbol Definition and Description
Fq

t ,Fa
t the features for existing questions/answers at time t

fq
t+1, f

a
t+1 the features of new questions/answers at time t + 1

Kq
t ,Ka

t the kernel matrix of Fq
t and Fa

t
kq

t+1,h
q
t+1 the kernel matrix of new questions at time t + 1

ka
t+1,h

a
t+1 the kernel matrix of new answers at time t + 1

Uq
t ,Λ

q
t the low-rank matrices to approximate Kq

t
Ua

t ,Λ
a
t the low-rank matrices to approximate Ka

t
Mt the row-normalized association matrix between existing

questions and answers at time t
mt+1 the row-normalized association matrix between new

questions and answers at time t + 1
Yq

t ,Ya
t the impact score for existing questions/answers at time t

yq
t+1, y

a
t+1 the impact score for new questions/answers at time t + 1

nq, na the number of existing questions/answers at time t
iq, ia the number of new questions/answers at time t + 1
d the feature dimension
r the rank of Uq

t , Λq
t , Ua

t , and Λa
t

th the threshold for the filtering step

is clear in the context. We use the row-normalized nq × na ma-
trix Mt to denote the association between questions and answers at
time t, where non-zero element Mt(i, j) indicates that the jth answer
belongs to the ith question. Thus, the matrix Mt is sparse since it
contains only na non-zero elements. We also use Fq

t (i, :) to repre-
sent the ith row of matrix Fq

t , Yq
t (i) to represent the ith element of

vector Yq
t , and (Fq

t)′ to represent the transpose of Fq
t .

Based on the above notations, we define the LIP problem in its
static form as:

PROBLEM 1. Static LIP Problem

Given: the question/answer feature matrix Fq/Fa, the question/answer
impact vector Yq/Ya, and the association matrix M;

Output: the impact of new questions and their answers.

In real CQA sites where questions and answers continuously ar-
rive, we need to update the model to keep it up-to-date. To this end,
we define the following dynamic form of the LIP problem:

PROBLEM 2. Dynamic LIP Problem

Given: the question/answer feature matrix Fq
t /Fa

t and the newly
arrived question/answer feature matrix fq

t+1/fa
t+1, the ques-

tion/answer impact vector Yq
t /Ya

t and the newly arrived ques-
tion/answer impact vector yq

t+1/ya
t+1, as well as the associa-

tion matrix Mt and mt+1;

Output: the impact of new questions and their answers.

2.2 Solution Space
Solution Space. Let us first define the solution space of the LIP

problem, which is represented by a genealogy graph in Fig. 1. In
this paper, we consider three key aspects that matter with the pre-
diction performance, including (a) whether the predication mod-
els are linear or non-linear; (b) whether we treat the prediction of
the questions and the answers separately (single) or jointly (cou-
pling); and (c) whether the prediction is static or dynamic. Based
on these three aspects, we could have different variants of the pre-
diction algorithms for the LIP problem, whose intrinsic relationship
is also summarized in Fig. 1. In the figure, we use the letter K, M,
and I to denote non-linearity, coupling, and dynamics, respectively.

LIP-KIM
(non-linear, coupling, dynamic)

Linear Co-Prediction [29]
(LIP-M)

Ridge Regression
(linear, static, single)

Coupling
Non-linear Dynamics

Recursive Kernel Ridge
Regression [11] (LIP-KI)

LIP-KM
(non-linear, coupling)

LIP-IM
(dynamic, coupling)

LIP-KIMA
(non-linear, coupling, dynamic)

LIP-KIMAA
(non-linear, coupling, dynamic)

K: Non-linear
I: Dynamic
M: Coupling
A: Approximate

Kernel Ridge
Regression [25] (LIP-K)

Recursive Ridge
Regression [15] (LIP-I)

Figure 1: The solution space of LIP problem. Shaded boxes are
proposed algorithms; and white boxes are existing work.

For example, LIP-KIM means that our model is non-linear and dy-
namic, and it jointly predict the long-term impact of questions and
answers; LIP-K means that our prediction model is non-linear and
static, and it treats questions and answers separately, etc.

In Fig. 1, each upward solid arrow makes the model more com-
prehensive by modeling more aspects in the prediction algorithms,
and each dashed arrow makes the algorithms more scalable. For
example, starting with the ridge regression algorithm in the bottom
layer, we have the kernel ridge regression (KRR) [25] by incorpo-
rating non-linearity, and we have the recursive ridge regression [15]
by incorporating dynamics. If we incorporate both non-linearity
and dynamics, we have the recursive kernel ridge regression algo-
rithm (RKRR) [11] in the third layer.

Preliminaries. In Fig. 1, we use shaded boxes to indicate the
algorithms proposed in this paper, and while boxes to indicate ex-
isting work. Before presenting the proposed algorithms in the next
section, we first briefly review some existing work (e.g., white
boxes), which serves as the building blocks of our proposed al-
gorithms.

(A) Linear Co-Prediction. In our tech report [29], we proposed
a regularized optimization formulation to jointly predict the voting
score of questions and answers

min
αq ,αa

∑nq

i=1(Fq(i, :)αq − Yq(i))2 +
∑na

i=1(Fa(i, :)αa − Ya(i))2

+θ
∑nq

i=1(Fq(i, :)αq −M(i, :)Faαa)2 + λ(||αq||22 + ||αa||22) (1)

where parameters λ and θ are used to control regularization and the
importance of the coupling between questions and answers, respec-
tively.

(B) Kernel Ridge Regression. In order to capture the non-linearity
between the features and outputs, a natural choice is to user kernel-
ized methods. Take question impact prediction as an example, the
so-called kernel ridge regression [25] aims to estimate a coefficient
βq as follows

min
βq

∑nq

i=1(Kq(i, :)βq − Yq(i))2 + λ(βq)′Kqβq (2)

where Kq is the kernel matrix of Fq.

3. THE PROPOSED ALGORITHMS
In this section, we propose our solutions for the LIP problem.

We start with presenting two algorithms for Problem 1 (subsection

3.1) and Problem 2 (subsection 3.2), respectively; and then address
the computational challenges (subsection 3.3-3.4).

3.1 LIP-KM Algorithm for Problem 1
Here, we address the static LIP problem (Problem 1). We pro-

pose an algorithm (LIP-KM) to capture both the non-linearity and
the coupling aspects.

For the non-linear aspect, a natural choice is to kernelize a linear
prediction model (e.g., linear ridge regression). Recall that kernel
method aims to produce non-linear versions of linear learning algo-
rithms by mapping the data points into a high-dimensional Hilbert
space H with a non-linear function φ [4]. The key idea behind
kernel methods is to use the kernel functions to replace the inner-
product operations in the high-dimensional Hilbert space H , and
such replacement can be ensured by Mercer’s Condition [6]. In
other words, for two data points F(i, :) and F(j, :), the inner product
of φ(F(i, :)) and φ(F(j, :)) in the Hilbert space H can be directly
computed by a Mercer kernel κ(F(i, :),F(j, :))

κ(F(i, :),F(j, :)) =< φ(F(i, :)), φ(F(j, :)) >= φ(F(i, :))φ(F(j, :))′ (3)

where < ·, · > indicates the inner product inH . As we can see from
Eq. (3), we can derive the non-linear models without any explicit
knowledge of either φ or H . Common kernel functions include
Gaussian kernel, polynomial kernel, cosine kernel, etc.

For the coupling aspect, LIP-KM imposes a so-called impact
consistency on the prediction space by requiring the predicted im-
pact of a question to be close to that of its answer (see our tech
report [29] for the detailed explanations about its rationality).

Putting the non-linearity and coupling aspects together, we have
the following optimization formulation for Problem 1

min
βq ,βa

∑nq

i=1(Kq(i, :)βq − Yq(i))2 +
∑na

i=1(Ka(i, :)βa − Ya(i))2

+θ
∑nq

i=1(Kq(i, :)βq −M(i, :)Kaβa)2

+λ((βq)′Kqβq + (βa)′Kaβa) (4)

where θ is a weight parameter to control the importance of cou-
pling, λ is a regularization parameter, andKq andKa are the kernel
matrices of Fq and Fa, respectively. Kq and Ka can computed as
Kq(i, j) = κ(Fq(i, :),Fq(j, :)), and Ka(i, j) = κ(Fa(i, :),Fa(j, :)).

Eq. (4) can be solved by the closed-form solution

β = arg min
βq ,βa
||Kqβq − Yq ||22 + ||Kaβa − Ya ||22 + θ||Kqβq −MKaβa ||22

+λ((βq)′Kqβq + (βa)′Kaβa)

=

[
(θ + 1)Kq + λI −θMKa

−θM′Kq Ka + θM′MKa + λI

]−1[Yq

Ya

]
(5)

where β = [βq;βa]. Once the coefficient vectors βq and βa are
inferred from the above equation, the impact of questions/answers
can then be predicted as

Ŷq
test = Kq

testβ
q, Ŷa

test = Ka
testβ

a (6)

where the kernel matrices on the test set Fq
test and Fa

test can be com-
puted as Kq

test(i, j) = κ(F
q
test(i, :),Fq(j, :)), Ka

test(i, j) = κ(Fa
test(i, :),

Fa(j, :)).
Algorithm Analysis. Let us analyze the effectiveness and effi-

ciency of the LIP-KM algorithm (i.e., Eq. (5)). We first summarize
the optimality of LIP-KM in the following lemma, which states that
LIP-KM finds (at least) a local minimum for the static LIP problem.

LEMMA 1. Optimality of LIP-KM. Eq. (5) finds a local min-
imum for Eq. (4).

PROOF. Omitted for brevity. �

Algorithm 1 The LIP-KIM Algorithm.

Input: S−1
t , βt, Fq

t , fq
t+1, Fa

t , fa
t+1, yq

t+1, ya
t+1, Mt and mt+1

Output: βt+1, S−1
t+1

1: compute the new kernels kq
t+1, hq

t+1, ka
t+1 and ha

t+1 in Eq. (7);
2: compute S1, S2, S3, D, and E1 as Eq. (9) - (13);

3: update S−1
t+1 as E′1

[
S−1

t + S−1
t S1DS2S−1

t −S−1
t S1D

−S−1
3 S2S−1

t (I + S1DS2S−1
t) D

]
E1;

4: update βt+1 as E1

[
βt + S−1

t S1D(S2βt − [yq
t+1; ya

t+1])
−S−1

3 S2(βt + S−1
t S1DS2βt) + D[yq

t+1; ya
t+1]

]
;

5: return βt+1, S−1
t+1;

Next, we summarize the time complexity and space complexity
of LIP-KM in the following lemma, which basically states that LIP-
KM requires O((nq + na)3) time and O((nq + na)2) space.

LEMMA 2. Complexity of LIP-KM. The time complexity of
Eq. (5) is O((nq + na)3 + (nq)2d + (na)2d); the space complexity of
Eq. (5) is O((nq + na)2 + (nq + na)d).

PROOF. Omitted for brevity. �

3.2 LIP-KIM Algorithm for Problem 2
Here, we address the dynamic LIP problem (Problem 2). We

present the LIP-KIM algorithm to incrementally update the model
in Eq. (5). The basic idea of LIP-KIM is to incorporate the dynamic
aspect into LIP-KM, and therefore it is adaptive to newly arrived
training examples.

When new questions and answers arrive at time t + 1, we first
need to compute the new kernel matrices Kq

t+1 and Ka
t+1 which are

as follows

Kq
t+1 =

[Kq
t (kq

t+1)′

kq
t+1 hq

t+1

]
, Ka

t+1 =

[Ka
t (ka

t+1)′

ka
t+1 ha

t+1

]
(7)

where the kernel matrices involving the newly arrived examples
can be computed as: kq

t+1(i, j) = κ(fq
t+1(i, :),Fq

t (j, :)), hq
t+1(i, j) =

κ(fq
t+1(i, :), fq

t+1(j, :)), ka
t+1(i, j) = κ(fa

t+1(i, :),Fa
t (j, :)), and ha

t+1(i, j) =
κ(fa

t+1(i, :), fa
t+1(j, :)).

To simplify the algorithm description, let us introduce the fol-
lowing matrices

St =

[
(θ + 1)Kq

t + λI −θMtKa
t

−θM′
tKq

t Ka
t + θM′

tMtKa
t + λI

]
(8)

S1 =

[
(θ + 1)(kq

t+1)′ −θMt(ka
t+1)′

−θM′
t(k

q
t+1)′ (ka

t+1)′ + θM′
tMt(ka

t+1)′

]
(9)

S2 =

[
(θ + 1)kq

t+1 −θmt+1ka
t+1−θm′t+1kq

t+1 ka
t+1 + θm

′
t+1mt+1ka

t+1

]
(10)

S3 =

[
(θ + 1)hq

t+1 + λI −θmt+1ha
t+1−θm′t+1hq

t+1 ha
t+1 + θm

′
t+1mt+1ha

t+1 + λI

]
(11)

D = (S3 − S2S−1
t S1)−1 (12)

With these extra notations, we present our LIP-KIM algorithm
for solving Problem 2, which is summarized in Alg. 1. As we can
see from the algorithm, we re-use S−1

t and βt from previous compu-
tations. Therefore, we also need to update S−1

t+1 and βt+1 for future
iterations. After we compute the new kernels as well as the matri-
ces (i.e., S1, S2, S3 and D) that are based on the new kernels, we

can update the model in Steps 3-4. In these two steps, E1 stands for
a permutation matrix to exchange the corresponding rows/columns

E1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Inq×nq 0 0 0

0 0 Iiq×iq 0
0 Ina×na 0 0
0 0 0 Iia×ia

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

where iq and ia denote the number of questions and answers arrived
at time t + 1, respectively.

Algorithm Analysis. The correctness of LIP-KIM is summarized
in the following theorem, which states that LIP-KIM can find the
same coefficients (i.e., βt+1) as if we apply the LIP-KM algorithm
whenever we have new training examples.

THEOREM 1. Correctness of LIP-KIM. Let β∗t+1 be the output
of Eq. (5) at time t + 1, and βt+1 be the output of Alg. 1 updated
from time t to t + 1, we have that βt+1 = β

∗
t+1.

PROOF. Notice that Eq. (5) can be re-written as

βt = S−1
t

[
Yq

t
Ya

t

]

Therefore, we need to first prove the update procedure for S−1
t (i.e.,

Step 3 in Alg. 1). St+1 can be written as

St+1 =

[
(θ + 1)Kq

t+1 + λI −θMt+1Ka
t+1−θM′

t+1Kq
t+1 Ka

t+1 + θM
′
t+1Mt+1Ka

t+1 + λI

]

where Mt+1 = [Mt, 0; 0,mt+1], and Kq
t+1 and Ka

t+1 are shown in
Eq. (7).

By exchanging the rows and columns of St+1 (i.e., moving all the
features at time t into the upper-left corner), we have

St+1 = E1

[
St S1

S2 S3

]
E′1 (14)

where S1, S2, S3 and E1 are specified in Eq. (9), Eq. (10), Eq. (11)
and Eq. (13), respectively.

Applying Matrix Inversion Lemma [24, 14] to Eq. (14), we have
that

S−1
t+1 =

(
E1

[
St S1

S2 S3

]
E′1

)−1

= E1

[
S−1

t + S−1
t S1DS2S−1

t −S−1
t S1D

−S−1
3 S2S−1

t (I + S1DS2S−1
t) D

]
E′1

where D is specified in Eq. (12), and E−1
1 = E′1.

Based on the updated S−1
t+1, we have that

β∗t+1 = S−1
t+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Yq

t
yq

t+1
Ya

t
ya

t+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E1

[
S−1

t + S−1
t S1DS2S−1

t −S−1
t S1D

−S−1
3 S2S−1

t (I + S1DS2S−1
t) D

]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Yq

t
Ya

t
yq

t+1
ya

t+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= E1

[
βt + S−1

t S1D(S2βt − [yq
t+1; ya

t+1])
−S−1

3 S2(βt + S−1
t S1DS2βt) + D[yq

t+1; ya
t+1]

]

= βt+1

which completes the proof. �
The time complexity and space complexity of our LIP-KIM is

summarized in the following lemma, which basically states that
LIP-KIM requires O((nq + na)2) time and O((nq + na)2) space.

LEMMA 3. Complexity of LIP-KIM. The time complexity of
Alg. 1 is O((nq + na)2(iq+ ia)+ (nq+ na)(iq+ ia)2 + (iq+ ia)3 + (nqiq+

naia + (iq)2 + (ia)2)d); the space complexity of Alg. 1 is O((nq + na +

iq + ia)2 + (nq + na + iq + ia)d).

PROOF. Omitted for brevity. �
Since iq and ia are usually much smaller than nq and na, and the

feature dimension d is a fixed constant, the time and space com-
plexity of LIP-KIM can be re-written as O((nq + na)2). Compared
with LIP-KM which is cubic in time, LIP-KIM is much more ef-
ficient. However, it is still quadratic wrt the total number of the
training examples. In the next two subsections, we propose two
approximate algorithms to further speed-up the computation.

3.3 LIP-KIMA Algorithm
The reason that LIP-KIM is quadratic is that we need to maintain

two kernel matrices of the size nq × nq and na × na, respectively. In
order to avoid quadratic cost for both time and space, we need an
efficient way to approximate/compress the full kernel matrices and
update them over time.

Take the kernel matrix for questions as an example. Notice that
Kq

t is symmetric and semi-positive definite; therefore, we can ap-
proximate it by eigen-decomposition: Kq

t ≈ Uq
tΛ

q
t (Uq

t)′, where Uq
t

is an nq × r orthogonal matrix, and Λq
t is an r × r diagonal matrix

whose entries are the largest r eigenvalues of Kq
t . By doing so, we

reduce the space cost from O(n2
q) to O(nqr).

When new questions arrive at time t + 1, we have the new kernel
matrixK q

t+1 as shown in Eq. (7). We approximate Kq
t+1 by Nyström

method [10] as

Kq
t+1 =

[Kq
t (kq

t+1)′

kq
t+1 hq

t+1

]

≈
[Kq

t
kq

t+1

]
(Kq

t)−1
[Kq

t
kq

t+1

]′

≈
[Kq

t
kq

t+1

]
Uq

t (Λq
t)−1Λ

q
t (Λq

t)−1(Uq
t)′

[Kq
t

kq
t+1

]′

=

[
Uq

t
kq

t+1Uq
t (Λq

t)−1

]
Λ

q
t

[
Uq

t
kq

t+1Uq
t (Λq

t)−1

]′

= X1Λ
q
t X′1 (15)

where we define X1 as the (nq + iq) × r matrix [Uq
t ; kq

t+1Uq
t (Λq

t)−1].
To make the decomposition of Kq

t+1 reusable for future updates,
we need to find the eigen-decomposition form of Kq

t+1. To this
end, we first perform the Singular Value Decomposition (SVD) on
X1 as X1 = PΛq

1Q′, where both P and Q are orthogonal. Next, we
perform eigen-decomposition on an r×r matrix X2 = Λ

q
1Q′Λq

t QΛq
1,

that is, X2 = VΛqV′.
Based on the above two steps, we have the approximate eigen-

decomposition of the new kernel matrix Kq
t+1 as follows

Kq
t+1 ≈ X1Λ

q
t X′1

= P(Λq
1Q′Λq

t QΛq
1)P′

= P(VΛqV′)P′

= Uq
t+1Λ

q
t+1(Uq

t+1)′ (16)

where we define Uq
t+1 = PV and Λq

t+1 = Λ
q. Notice that Uq

t+1 is
orthogonal because both P and V are orthogonal.

We use the same approach to approximate and update the kernel
matrix for answers: Ka

t+1 ≈ Ua
t+1Λ

a
t+1(Ua

t+1)′. We further define the

Algorithm 2 The LIP-KIMA Algorithm.
Input: Uq

t , Λq
t , Ua

t , Λa
t , Fq

t , fq
t+1, Fa

t , fa
t+1, Yq

t , yq
t+1, Ya

t , ya
t+1, Mt and

mt+1

Output: βt+1, Uq
t+1, Λq

t+1, Ua
t+1 and Λa

t+1
1: compute the new kernels kq

t+1 and ka
t+1 in Eq. (7);

2: update Uq
t+1, Λq

t+1, Ua
t+1 and Λa

t+1 as Eq. (16);
3: define U, Λ and G as Eq. (17);
4: define A and B as [U, θGU] and [ΛU′;ΛU′];

5: update βt+1 as 1
λ
(I − A(λI + BA)−1B)

[
Yq

t+1
Ya

t+1

]
;

6: return βt+1, Uq
t+1, Λq

t+1, Ua
t+1 and Λa

t+1;

following notations to simplify the algorithm description

U = [Uq
t+1, 0; 0,Ua

t+1]
Λ = [Λq

t+1, 0; 0,Λa
t+1]

G = [I,−Mt+1;−M′
t+1,M

′
t+1Mt+1] (17)

Then, we have the following approximation for the St+1 matrix
defined in Eq. (8)

St+1 =

[
(θ + 1)Kq

t+1 + λI −θMt+1Ka
t+1−θM′

t+1Kq
t+1 Ka

t+1 + θM
′
t+1Mt+1Ka

t+1 + λI

]

= λI + (I + θG)
[Kq

t+1 0
0 Ka

t+1

]

≈ λI + UΛU′ + θGUΛU′

= λI + AB (18)

where we define A = [U, θGU] and B = [ΛU′;ΛU′].
Finally, applying Matrix Inversion Lemma to Eq. (18), we have

the coefficients βt+1

βt+1 = S−1
t+1

[
Yq

t+1
Ya

t+1

]

≈ (λI + AB)−1
[
Yq

t+1
Ya

t+1

]

=
1
λ

(I − A(λI + BA)−1B)
[
Yq

t+1
Ya

t+1

]
(19)

The complete algorithm of LIP-KIMA is summarized in Alg. 2.
As we can see, in addition to βt+1, the only variables we need to
update are Uq

t , Λq
t , Ua

t and Λa
t . Compared to Alg. 1, we do not need

to store βt; instead we need to store Yq
t and Ya

t . More importantly,
we do not need to store St; instead, we only need to store the much
smaller matrices of Uq

t , Λq
t , Ua

t and Λa
t .

Algorithm Analysis.The effectiveness of LIP-KIMA is summa-
rized in Lemma 4. According to Lemma 4, there are two possible
places where we could introduce the approximation error in the
LIP-KIMA algorithm, including (a) eigen-decomposition for the
Kt and (b) the Nyström method for Kt+1. Notice that if we only
do eigen-decomposition at t = 1, such approximation error might
be accumulated and amplified over time. In practice, we could ‘re-
start’ the algorithm every few time ticks, that is, to re-compute (as
opposed to approximate) the eigen-decomposition for the current
kernel matrix.

LEMMA 4. Effectiveness of LIP-KIMA. Let β∗t+1 be the output
of Eq. (5) at time t + 1, and βt+1 be the output of Alg. 2 updated
from time t to t + 1, we have βt+1 = β

∗
t+1 if Kt = UtΛt(Ut)′ and

ht+1 = kt+1(Kt)−1(kt+1)′ hold for both questions and answers.

PROOF. Omitted for brevity. �

The time complexity and space complexity of Alg. 2 is summa-
rized in the following lemma. It basically says that the LIP-KIMA
algorithm requires linear time and space wrt the total number of
questions and answers.

LEMMA 5. Complexity of LIP-KIMA. The time complexity of
Alg. 2 is O((nq + na + iq + ia)r2 + r3 + (nqiq + naia)d); the space
complexity of Alg. 2 is O((nq+na+ iq+ ia)d+ (nq+na+ iq+ ia)r+r2).

PROOF. Omitted for brevity. �
Since iq and ia are usually much smaller than nq and na, and the

low rank r and feature dimension d are fixed constants, the time
complexity and space complexity of Alg. 2 can be re-written as
O(nq + na) in terms of the total number of questions and answers.

3.4 LIP-KIMAA Algorithm
Compared with LIP-KIM, LIP-KIMA is much more scalable,

being linear in terms of both time and space complexity. However,
if the new training examples arrive in a stream-like, ever-growing
fashion, a linear algorithm might be still too expensive. To address
this issue, we further present the LIP-KIMAA algorithm to reduce
the complexity to be sub-linear.

Our LIP-KIMAA is built upon LIP-KIMA. The main difference
between LIP-KIMAA and LIP-KIMA is that we add an additional
filtering step between Step 1 and Step 2 in Alg. 2. That is, when
new questions and answers arrive at time t+1, we first treat them as
test set and apply the existing model at time t on this test set. Based
on the prediction results, we only add the questions and answers
whose prediction error is larger than a given threshold th. Notice
that the complexity of LIP-KIMA is linear wrt the number of ques-
tions and answers; as a result, our LIP-KIMAA scales linearly wrt
the number of remaining questions and answers after the filtering
steps. Therefore, LIP-KIMAA scales sub-linearly wrt to the total
number of questions and answers in both time and space. We omit
the detailed algorithm for brevity.

4. VARIANTS
The proposed LIP-KIM and its two approximate algorithms (LIP-

KIMA and LIP-LIMAA) are comprehensive. In terms of the mod-
eling power, they capture all the three aspects (non-linearity, cou-
pling, and dynamics). In this section, we show that our algorithms
are also flexible. That is, if only a subset of these three aspects mat-
ter with the prediction performance for some applications, our al-
gorithms can be naturally adapted to these special cases. We briefly
discuss some of these variants, and then summarize the algorithms
in Fig. 1.

4.1 Variant 1: Linear Model LIP-IM
If we only consider the coupling and dynamic aspects (i.e., ig-

noring the non-linear aspect), our LIP-KIM can be simplified as the
LIP-IM algorithm. Essentially, LIP-IM aims to efficiently update
the solution of Eq. (1)

α =

[
(θ + 1)(Fq)′Fq + λI −θ(Fq)′MFa

−θ(Fa)′M′Fq (Fa)′Fa + θ(Fa)′M′MFa + λI

]−1[(Fq)′Yq

(Fa)′Ya

]

where α = [αq;αa].
In this case, the St matrix becomes

St =

[
(θ + 1)(Fq

t)′Fq
t + λI −θ(Fq

t)′MtFa
t

−θ(Fa
t)′M′

tF
q
t (Fa

t)′Fa
t + θ(Fa

t)′M′
tMtFa

t + λI

]

When new questions and answers arrive at time t + 1, we define
the L matrix and the R matrix as

L =
[
(θ + 1)(fq

t+1)′ −θ(fq
t+1)′ 0 0

0 0 −θ(fa
t+1)′m′t+1

[
(fa

t+1)′, θ(fa
t+1)′m′t+1

]]

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fq
t+1 0
0 mt+1fa

t+1
fq

t+1 0
0

[
fa

t+1; mt+1fa
t+1

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As we can see, both L and R are only based on new observations

fq
t+1, fa

t+1 and mt+1.
Next, we further define matrix C = S−1

t L(I+RS−1
t L)−1R, and we

can show that the model can be updated as follows

S−1
t+1 = (I − C)S−1

t

αt+1 = (I − C)
(
αt + S−1

t

[
(fq

t+1)′yq
t+1

(fa
t+1)′ya

t+1

])

Remarks. Notice that compared with LIP-KIM, LIP-IM is much
more efficient since it only needs to compute the inverse of a much
smaller (3iq + ia) × (3iq + ia) matrix (see the computation of matrix
C). By ignoring the smaller terms (i.e., iq and ia), the overall time
complexity of LIP-IM is O(d2) where d indicates feature dimen-
sion; on the other hand, directly updating the model would require
O((nq+na)d+d3) time. In the meanwhile, by a similar procedure as
the proof for Theorem 1, we can show that LIP-IM finds the exact
solution of Eq. (1).

4.2 Variant 2: Approximate LIP-KI
If we only consider the non-linearity and dynamics aspects (i.e.,

ignoring the coupling aspect), our LIP-KIMA can be further simpli-
fied. Take the prediction for questions as an example. With the ap-
proximate eigen-decomposition by Eq. (16): Kq

t+1 ≈ Uq
t+1Λ

q
t+1(Uq

t+1)′,
we can update the coefficients βq

t+1 as follows

βq
t+1 ≈ (Uq

t+1Λ
q
t+1(Uq

t+1)′ + λI)−1Yt+1

= Uq
t+1Λ

q
3(Uq

t+1)′Yt+1

where Λq
3 is still a diagonal matrix with Λq

3(i, i) = 1/(Λq
t+1(i, i)+ λ).

Remarks. Although sharing the same linear time complexity as
LIP-KIMA, this variant is even more efficient in practice since it
does not need any matrix inversion at all.

4.3 Variant 3: LIP-KIM with Only Questions
Next, we discuss a special case of LIP-KIM when only new ques-

tions arrive at time t + 1. Compared to Alg. 1, we can simplify the
following notations

S1 =

[
(θ + 1)(kq

t+1)′

−θM′
t(k

q
t+1)′

]

S2 =
[
(θ + 1)kq

t+1 0iq×(nq+na)

]
S3 = (θ + 1)hq

t+1 + λI

E1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Inq×nq 0 0

0 0 Iiq×iq
0 Ina×na 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Then the model can be updated as

S−1
t+1 = E1

[
S−1

t + S−1
t S1DS2S−1

t −S−1
t S1D

−S−1
3 S2S−1

t (I + S1DS2S−1
t) D

]
E′1

βt+1 = E1

[
βt + S−1

t S1D(S2βt − yq
t+1)

−S−1
3 S2(βt + S−1

t S1DS2βt) + Dyq
t+1

]

Remarks. The time complexity of this variant is O((nq + na)2iq +

(nq + na)(iq)2 + (iq)3 + (nqiq + (iq)2)d), which can be re-written as
O((nq+na)2) by ignoring smaller terms of iq and d. The correctness
of this variant can also be shown by following a similar procedure
as the proof for Theorem 1.

Table 2: The summarization of the algorithms from the genealogy graph in Fig. 1. The complexity is the time complexity for updating
the model at each time tick, where the n is the totally number of the training examples and those smaller terms are omitted for clarity.
The right five columns are the proposed algorithms in this paper.

SVR KRR (LIP-K) RKRR (LIP-KI) CoPs (LIP-M) LIP-IM LIP-KM LIP-KIM LIP-KIMA LIP-KIMAA
Non-linearity � � � x x � � � �

Coupling x x x � � � � � �
Dynamics x x � x � x � � �

Complexity � O(n2) O(n3) O(n2) O(n) O(1) O(n3) O(n2) O(n) < O(n)

Table 3: The statistics of SO and Math data sets.
Data Questions Answers Users Votes
SO 1,966,272 4,282,570 756,695 14,056,000

Math 16,638 32,876 12,526 202,932

4.4 Summarization
Finally, we make a comparison of different algorithms in Fig. 1

in terms of their modeling power and efficiency. The results are
summarized in Table 2. In this table, we first check whether a
given algorithm captures each of the three desired aspects (non-
linearity, coupling, and dynamics). As we can see, only our LIP-
KIM, LIP-KIMA, and LIP-KIMAA algorithms meet this require-
ment. We also summarize the time complexity of the algorithm for
updating the model at each time tick, where the smaller terms (e.g.,
the feature dimensionality d, the number of new training examples
iq, ia, etc) are omitted for clarity. For non-linear algorithms like
KRR [25], support vector regression (SVR) [9, 7], RKRR [11],
LIP-KM and LIP-KIM, they need at least quadratic time for the
model training because they typically need to maintain the kernel
matrix. Such a complexity is unaffordable in many CQA sites. On
the other hand, the time complexity of the proposed LIP-KIMA
and LIP-KIMAA algorithms is linear and sub-linear wrt the total
number of questions and answers, respectively.

5. EXPERIMENTS
In this section, we present the experimental evaluations. The

experiments are designed to answer the following questions:

• Effectiveness: How accurate are the proposed algorithms for
predicting the long-term impact of questions/answers?

• Efficiency: How scalable are the proposed algorithms?

5.1 Experiment Setup
We use the data from two real CQA sites, i.e., Stack Overflow

(SO) and Mathematics Stack Exchange (Math), to evaluate our al-
gorithms. They are popular CQA sites for programming and math,
respectively. The statistics of the two data sets are summarized in
Table 3.

We use both content and contextual features. For content fea-
tures, we adopt the “bag of words” model to extract content features
after removing the infrequent words. This model is widely used
in natural language processing where the frequency of each word
is used as a feature for training. In addition, we adopt some com-
monly used contextual features in the literature, including the ques-
tioner’s reputation at question creation time, the answerer’s repu-
tation at answer creation time, the length of the question/answer,
the number of questioner’s previous questions at question creation
time, and the number of answerer’s previous answers at answer
creation time. For these features, we can extract them at the mo-
ment when the question/answer is posted. For other contextual
features, we need to choose a short time window by the end of

which the voting score is predicted. With such a fixed time win-
dow, we can include some time-related features such as the number
of comments/answers received during the fixed time window. In
this work, we fix this time window as 24 hours. Overall, we have
4,180 and 4,444 features for Math data and SO data, respectively
(i.e., d = 4, 180 for Math data and d = 4, 444 for SO data). For
the kernel matrix, we adopt the cosine kernel function due to the
sparsity of our feature matrix.

For long-term impact, we restrict our attention to predict the im-
pact of a question/answer after it is posted for six months. For each
post in the data set, there are several choices to measure impact in-
cluding the number of pageviews, the number of favorites, and the
user voting score (which is the difference between the number of
up-votes and the number of down-votes on the post). In this work,
we choose the voting score for the following two reasons. First,
we conduct a survey, asking different users about which is the best
metric as the long-term impact measure of CQA posts; and most
of the users (79.4%) choose the voting score. Second, to some ex-
tent, the voting score of a question/answer resembles the number
of the citations that a research paper receives in the scientific pub-
lication domain. It reflects the net number of users who have a
positive attitude toward it. In addition, we also measured the cor-
relation between the three choices and found that all of them are
strongly positive correlated. Thus, we expect that our algorithms
could also be used to predict the other two metrics (i.e., pageviews
and favorites). We normalize the voting scores into the range of
[0, 1].

To evaluate the dynamic aspect of our algorithms, we start with
a small initial training set, and gradually add new examples into
the training set in chronological order. For Math data, we start with
5% initial data, add 5% data for each update, and use the latest 10%
data as the test set. For SO data whose size is much larger than the
Math data, we start with 0.1% initial data, add 0.1% data for each
update, and use the latest 0.1% data as the test set.

For evaluation metrics, we adopt the root mean square error (RMSE)
between the real impact and the estimated impact for effectiveness,
and the wall-clock time for efficiency. All the efficiency experi-
ments were run on a machine with eight 3.4GHz Intel Cores and
24GB memory.

Repeatability of Experimental Results. Both data sets are of-
ficially published and publicly available5. Furthermore, we will
make the code of the proposed algorithms as well as the extracted
feature files publicly available. For all the results reported in this
section, the specific parameter settings are as follows. We set λ =
θ = 1 for Math data and λ = θ = 0.1 for SO data. For the low rank r
in LIP-KIMA and LIP-KIMAA, we set it as 10. For LIP-KIMAA,
we set th = 0.22 for Math data and th = 0.18 for SO data.

5.2 Effectiveness Results
We first compare the effectiveness of the proposed algorithms

with two state-of-the-art non-linear regression methods, i.e., kernel

5http://blog.stackoverflow.com/category/cc-wiki-dump/

2000 4000 6000 8000 10000 12000 14000 16000
0.22

0.24

0.26

0.28

0.3

of questions and answers (nq+na)

R
M

S
E

KRR
SVR
LIP−KIM
LIP−KIMA
LIP−KIMAA

(a) Question impact prediction on Math data

2000 4000 6000 8000 10000 12000 14000 16000

0.22

0.24

0.26

0.28

of questions and answers (nq+na)

R
M

S
E

KRR
SVR
LIP−KIM
LIP−KIMA
LIP−KIMAA

(b) Answer impact prediction on Math data

5000 10000 15000 20000 25000 30000

0.25

0.3

0.35

0.4

of questions and answers (nq+na)

R
M

S
E

KRR
SVR
LIP−KIM
LIP−KIMA
LIP−KIMAA

(c) Question impact prediction on SO data

5000 10000 15000 20000 25000 30000
0.18

0.2

0.22

0.24

of questions and answers (nq+na)

R
M

S
E

KRR
SVR
LIP−KIM
LIP−KIMA
LIP−KIMAA

(d) Answer impact prediction on SO data

Figure 2: The effectiveness comparisons. Lower is better. The proposed algorithms outperform both SVR and KRR.

(a) Math data (b) SO data

Figure 3: The speed comparisons. The proposed LIP-KIMA and LIP-KIMAA are much faster. Furthermore, LIP-KIMAA scales
sub-linearly (in the upper-right corner).

ridge regression (KRR) [25] and support vector regression (SVR) [7].
The prediction results of questions and answers on the two data sets
are shown in Fig. 2. On SO data, we only report the first few points
because some of the algorithms (e.g., KRR) cannot finish training
within 1 hour. We do not report the results by linear models (e.g.,
linear ridge regression) since their performance (RMSE) is much
worse than SVR.

We make several observations from Fig. 2. First, the proposed
LIP-KIM algorithm performs the best in most of the cases. For ex-
ample, when the size of training set increases to 90% on the Math

data, LIP-KIM improves the SVR method by 5.7% for questions
and 6.0% for answers. On SO data, LIP-KIM improves the KRR
method by up to 35.8% for questions and 3.6% for answers. This
indicates that the coupling aspect indeed helps in impact predic-
tion. Second, the performance of the proposed LIP-KIMA algo-
rithm is close to LIP-KIM. This result indicates that while it re-
duces the time complexity from quadratic to linear, the approxima-
tion method introduces little performance loss. Finally, although
not as good as LIP-KIM and LIP-KIMA, the LIP-KIMAA algo-

0 50 100 150

0.22

0.24

0.26

0.28

0.3

Wall−clock time (second)

R
M

S
E

LIP−KIMAA
KRR

LIP−KM

LIP−KIM

SVR

CoPs

LIP−KIMA

(a) Answer impact prediction on Math data

0 500 1000 1500 2000 2500

0.2

0.25

0.3

0.35

0.4

Wall−clock time (second)

R
M

S
E

CoPs

KRR
LIP−KIMAA

LIP−KIMA

SVR
LIP−KIM

LIP−KM

(b) Answer impact prediction on SO data

Figure 4: The quality-speed balance-off. The proposed LIP-KIMA and LIP-KIMAA achieve a good balance between the prediction
quality and the efficiency (in the left-bottom corner). Best viewed in color.

Table 4: Performance gain analysis. Smaller is better. All three
aspects of non-linearity, coupling, and dynamics are helpful.

Questions/Answers SO Math
Ridge regression 0.4920/0.4409 0.2799/0.3860

LIP-K 0.4214/0.2044 0.2461/0.2368
LIP-KM 0.2704/0.1987 0.2314/0.2292
LIP-KIM 0.2595/0.1867 0.2249/0.2208

rithm is still better than the compared methods for most of the
cases.

To further show the effects of all the three aspects (i.e., non-
linearity, coupling, and dynamics), we analyze the performance
gain in Table 4. In the table, LIP-K incorporates non-linearity into
ridge regression, LIP-KM incorporates coupling into LIP-K, and
LIP-KIM incorporates dynamics into LIP-KM. As we can see, all
three aspects are helpful to improve the prediction performance.

5.3 Efficiency Results
Next, we compare the efficiency of the proposed algorithms with

KRR and SVR in Fig. 3. Notice that the y-axis is in log scale. In
Fig. 3, we also plot the results of LIP-KIMAA with y-axis in linear
scale in the upper-right corner. We only report the results by LIP-
KIMAA there because it is the only algorithm that can handle the
entire SO data set.

As we can see from the figure, our LIP-KIMA and LIP-KIMAA
are much faster than the other algorithms. In the upper-right corner,
we can observe that the LIP-KIMAA scales sub-linearly wrt the to-
tal number of questions and answers. For instance, it only requires
about 60 seconds when there are more than 3,000,000 questions
and answers. In contrast, KRR requires more than 2,000 seconds
when the size of the training set is about 30,000.

Finally, we study the quality-speed balance-off of different al-
gorithms in Fig. 4. In the figure, we show the answer prediction
results only. Similar results are observed in question prediction,
and we omit the results for brevity. In Fig. 4, we plot the RMSE on
the y-axis and the wall-clock time on the x-axis. We also plot the
results of the linear co-prediction method CoPs [29] and LIP-KM.
Ideally, we want an algorithm sitting in the left-bottom corner. As
we can see, both our LIP-KIMA and LIP-KIMAA are in the left-
bottom corner. For example, for answer impact prediction on the
SO data, compared with SVR, LIP-KIMAA is 70x faster in wall-
clock time and 14.0% better in RMSE. Overall, we recommend
LIP-KIMAA in practice.

6. RELATED WORK
In this section, we briefly review related work including mining

CQA sites and mining stream data.
Mining CQA Sites: There is a large body of existing work on

mining CQA sites. For example, Li et al. [19] aim to predict ques-
tion quality, which is defined as the combination of user attention,
answer attempts and the arrival speed of the best answer. Jeon
et al. [18] and Suryanto et al. [28] evaluate the usefulness of an-
swer quality and incorporate it to improve retrieval performance.
To predict the quality of both questions and answers, Agichtein
et al. [2] develop a graph-based model to catch the relationships
among users, Li et al. [20] adopt the co-training approach to employ
both question features and answer features, and Bian et al. [5] pro-
pose to propagate the labels through user-question-answer graph
so as to tackle the sparsity problem where only a small number
of questions/answers are labeled. Recently, Anderson et al. [3]
propose to predict the long-lasting value (i.e., the pageviews) of
a question and its answers. How to predict the answer that the
questioner will probably choose as the accepted answer is also well
studied [22, 26, 1]. Overall, our work differs from these existing
work at the methodology level. While most of the existing work
treats the prediction problem as a single, and/or linear, and/or static
problem, we view the problem from a comprehensive perspective
and propose to incorporate all these important aspects into the pre-
diction models.

Mining Stream Data: From the dynamic aspect, our LIP prob-
lem is related to stream mining [13] and time-series mining [12].
The main focus of existing stream/time-series mining work is on
pattern discovery, clustering, and classification tasks. Chen et al. [8]
and Ikonomovska et al. [17] study the regression problem in data
streams; however, they still focus on a single and linear predic-
tion problem. Several researchers also consider the non-linear and
dynamic aspects in regression problem [11, 23]. Different from
these existing work, we consider the coupling between questions
and answers, and propose approximation methods to speed-up and
scale-up the computation.

Other Related Work: There are several pieces of interesting
work that are remotely related to our work. Liu et al. [21] propose
the problem of CQA site searcher satisfaction, i.e., whether or not
the answer in a CQA site satisfies the information searcher using
the search engines. Shtok et al. [27] attempt to answer certain new
questions by existing answers. The question routing problem (e.g.,
how to route the right question to the right answerer) is also an
active research area [30, 16].

7. CONCLUSIONS
In this paper, we have proposed a family of algorithms to pre-

dict the long-term impact of questions/answers in CQA sites. The
proposed algorithms enjoy three key advantages. First, they are
comprehensive in the sense that our model naturally captures three
key aspects (i.e., non-linearity, coupling, and dynamics) that mat-
ter with the long-term impact of a post. Second, they are flexible
and general, being able to handle the special cases where only a
fraction of these aspects are prominent. Third, they are scalable
and adaptive to the newly arrived questions and answers. We an-
alyze our algorithms in terms of optimality, correctness, and com-
plexity, and reveal the intrinsic relationship among different algo-
rithms. We conduct extensive experimental evaluations on two real
CQA data sets to demonstrate the effectiveness and efficiency of
our approaches.

8. ACKNOWLEDGMENTS
This work is supported by the National 863 Program of China

(No. 2012AA011205), and the National Natural Science Founda-
tion of China (No. 91318301, 61321491, 61100037). This material
is partially supported by by the National Science Foundation un-
der Grant No. IIS1017415, by the Army Research Laboratory un-
der Cooperative Agreement Number W911NF-09-2-0053, by De-
fense Advanced Research Projects Agency (DARPA) under Con-
tract Number W911NF-11-C-0200 and W911NF-12-C-0028, and
by Region II University Transportation Center under the project
number 49997-33 25.

The content of the information in this document does not nec-
essarily reflect the position or the policy of the Government, and
no official endorsement should be inferred. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

9. REFERENCES
[1] L. Adamic, J. Zhang, E. Bakshy, and M. Ackerman.

Knowledge sharing and yahoo answers: everyone knows
something. In WWW, pages 665–674. ACM, 2008.

[2] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and
G. Mishne. Finding high-quality content in social media. In
WSDM, pages 183–194. ACM, 2008.

[3] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec.
Discovering value from community activity on focused
question answering sites: a case study of stack overflow. In
KDD, pages 850–858. ACM, 2012.

[4] N. Aronszajn. Theory of reproducing kernels. Transactions
of the American mathematical society, 68(3):337–404, 1950.

[5] J. Bian, Y. Liu, D. Zhou, E. Agichtein, and H. Zha. Learning
to recognize reliable users and content in social media with
coupled mutual reinforcement. In WWW, pages 51–60.
ACM, 2009.

[6] C. J. Burges. A tutorial on support vector machines for
pattern recognition. Data mining and knowledge discovery,
2(2):121–167, 1998.

[7] C.-C. Chang and C.-J. Lin. Libsvm: a library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2(3):27, 2011.

[8] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang.
Multi-dimensional regression analysis of time-series data
streams. In VLDB, pages 323–334, 2002.

[9] R. Collobert and S. Bengio. Svmtorch: Support vector
machines for large-scale regression problems. The Journal of
Machine Learning Research, 1:143–160, 2001.

[10] P. Drineas and M. W. Mahoney. On the nyström method for
approximating a gram matrix for improved kernel-based
learning. The Journal of Machine Learning Research,
6:2153–2175, 2005.

[11] Y. Engel, S. Mannor, and R. Meir. The kernel recursive
least-squares algorithm. IEEE Transactions on Signal
Processing, 52(8):2275–2285, 2004.

[12] T.-c. Fu. A review on time series data mining. Engineering
Applications of Artificial Intelligence, 24(1):164–181, 2011.

[13] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining
data streams: a review. ACM Sigmod Record, 34(2):18–26,
2005.

[14] G. Golub and C. Van Loan. Matrix computations. 1996.
[15] S. S. Haykin. Adaptive filter theory. 2005.
[16] D. Horowitz and S. Kamvar. The anatomy of a large-scale

social search engine. In WWW, pages 431–440. ACM, 2010.
[17] E. Ikonomovska, J. Gama, and S. Džeroski. Learning model

trees from evolving data streams. Data mining and
knowledge discovery, 23(1):128–168, 2011.

[18] J. Jeon, W. Croft, J. Lee, and S. Park. A framework to predict
the quality of answers with non-textual features. In SIGIR,
pages 228–235. ACM, 2006.

[19] B. Li, T. Jin, M. R. Lyu, I. King, and B. Mak. Analyzing and
predicting question quality in community question answering
services. In WWW, pages 775–782. ACM, 2012.

[20] B. Li, Y. Liu, and E. Agichtein. Cocqa: co-training over
questions and answers with an application to predicting
question subjectivity orientation. In EMNLP, pages 937–946,
2008.

[21] Q. Liu, E. Agichtein, G. Dror, E. Gabrilovich, Y. Maarek,
D. Pelleg, and I. Szpektor. Predicting web searcher
satisfaction with existing community-based answers. In
SIGIR, pages 415–424, 2011.

[22] Y. Liu, J. Bian, and E. Agichtein. Predicting information
seeker satisfaction in community question answering. In
SIGIR, pages 483–490. ACM, 2008.

[23] B. Pan, J. J. Xia, P. Yuan, J. Gateno, H. H. Ip, Q. He, P. K.
Lee, B. Chow, and X. Zhou. Incremental kernel ridge
regression for the prediction of soft tissue deformations. In
Medical Image Computing and Computer-Assisted
Intervention, pages 99–106. Springer, 2012.

[24] W. W. Piegorsch and G. Casella. Inverting a sum of matrices.
SIAM Review, 32(3):470–470, 1990.

[25] C. Saunders, A. Gammerman, and V. Vovk. Ridge regression
learning algorithm in dual variables. In ICML, pages
515–521, 1998.

[26] C. Shah and J. Pomerantz. Evaluating and predicting answer
quality in community qa. In SIGIR, pages 411–418, 2010.

[27] A. Shtok, G. Dror, Y. Maarek, and I. Szpektor. Learning
from the past: answering new questions with past answers. In
WWW, pages 759–768, 2012.

[28] M. Suryanto, E. Lim, A. Sun, and R. Chiang. Quality-aware
collaborative question answering: methods and evaluation. In
WSDM, pages 142–151. ACM, 2009.

[29] Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu. Want a
good answer? ask a good question first! arXiv preprint
arXiv:1311.6876, 2013.

[30] Y. Zhou, G. Cong, B. Cui, C. Jensen, and J. Yao. Routing
questions to the right users in online communities. In ICDE,
pages 700–711. IEEE, 2009.

