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High-impact Scientific Work
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Important implications of high-impact scientific work: 
- personal career development 
- recruitment search 
- jurisdiction of research resources 

Question: how to forecast the long-term impact at 
the early stage?
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Challenges

▪ C1: Scholarly feature design 

▪ C2: Non-linearity 

▪ C3: Domain heterogeneity 

▪ C4: Dynamics
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C1: Scholarly Feature Design

Obs: Adding content features brings little improvement
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C2: Non-linearity
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C3: Domain heterogeneity
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Obs: Impact of scientific work from different domains 
behaves differently
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C4: Dynamics

7

Question: How to quickly update the predictive model?
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Roadmap
▪Motivations 
▪Proposed Solutions: iBall 
▪Experimental Results 
▪Conclusions
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iBall — Formulations
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Cross-Domain  
Consistency

▪ Optimization Formulation

▪ Remarks 
▪ Within-Domain Model: regression/classification, linear/non-linear 

▪ Cross-Domain Consistency: similar domains have similar models
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Within-Domain Model

min
w(i),i=1,...,nd

ndP
i=1

L[f(X(i),w(i)),Y(i)] + �
ndP
i=1

⌦(w(i))

+✓
ndP
i=1

ndP
j=1

Aijg(w(i),w(j))

Question: how to instantiate such consistency?
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iBall — linear formulation
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Details:

Intuitions:

min
w(i),i=1,...,nd

ndP
i=1

kX(i)w(i) �Y(i)k22 + �
ndP
i=1

kw(i)k22

+✓
ndP
i=1

ndP
j=1

Aijkw(i) �w(j)k22
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iBall — non-linear formulation
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   Details:
min

w(i),i=1,...,nd

ndP
i=1

kK(i)w(i) �Y(i)k22 + �
ndP
i=1

w(i)0K(i)w(i)

+✓
ndP
i=1

ndP
j=1

AijkK(i)w(i) �K(ij)w(j)k22
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Predicted output 
(domain i     domain i)

 

Predicted output 
(domain j    domain i)! !

Intuitions:similar domain (large       )

similar predicted outputs (small                             )

Aij

kK(i)w(i) �K(ij)w(j)k22
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iBall — Closed-form Solutions

▪ Closed-form Solution 

➡ iBall — linear:
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w = S�1Y

Time Complexity: O((dnd)
3)

S =

i-th block column j-th block column

2

64

3

75

. . . . . . . . .

. . . X(i)0X(i) + (✓
ndP
j=1

Aij + �)I �✓AijI
i-th block

row

. . . . . . . . .

w = [w(1); . . . ;w(nd)] Y = [X(1)0Y(1); . . . ;X(nd)
0
Y(nd)]

d nd: feature dim : # of domains
dnd is in the order of 10 or 100
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iBall — Closed-form Solutions

▪ Closed-form Solution 

➡ iBall — non-linear:
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w = S�1Y

S =

i-th block column j-th block column

2

64

3

75

. . . . . . . . .

. . . (1 + ✓
ndP
j=1

Aij)K(i) + �I �✓AijK(ij) i-th block

row

. . . . . . . . .

Time Complexity: O(n3)

w = [w(1); . . . ;w(nd)] Y = [Y(1); . . . ;Y(nd)]

n : total # of training samples
is in the order of  millionsn
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iBall — Scale-up with Dynamic Update

▪ Key idea #1: Approx S by low-rank approx  

▪ Details:  

▪ Complexity:  
▪ Benefit: avoid matrix inverse
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wt+1 = S�1
t+1Yt+1

= Ut+1⇤
�1
t+1U

0
t+1Yt+1

St+1 ⇡ Ut+1⇤t+1U
0
t+1

(Overall:             ) O(n2r) (Overall:             ) O(nr)

O(n3) ! O(n2r + nr)

Question: how to avoid re-computing low-rank 
approx at each time step?
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iBall — Scale-up with Dynamic Update

▪ Key idea #2: Incrementally update the low 
rank structure of S 

▪ Details:  

▪ Complexity: 
▪ Benefit: avoid re-computing low-rank approx
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= +

St+1 S̃t �S

O(n2r) ! O((n+m)(r2 + r02)), r ⌧ n
(low rank, sparse)

Liangyue Li, Hanghang Tong, Yanghua Xiao, Wei Fan. Cheetah: Fast Graph 
Kernel Tracking on Dynamic Graphs.(SDM), 2015.

white: zeros 
blue: old at t 
pink: new at t+1
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Roadmap
▪Motivations 
▪Proposed Solutions: iBall 
▪Experimental Results 
▪Conclusions
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Experiment Setup

▪ Datasets: AMiner1 (2,243,976 papers, 
1,274,360 authors, 8,882 venues) 

▪ Evaluation Metric: Root Mean Squared 
Error (RMSE) 

▪ Evaluation Objects: 
➡Effectiveness 
➡Efficiency
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1 https://aminer.org/billboard/citation

https://aminer.org/billboard/citation
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Paper Citation Prediction Performance
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Author Citation Prediction Performance
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Venue Citation Prediction Performance
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Error Analysis
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Obs: bright region at x = y
Predicted Normalized Citation
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Running Time Comparison
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Quality vs. Speed
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Roadmap
▪Motivations 
▪Proposed Solutions: iBall 
▪Experimental Results 
▪Conclusions
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Conclusions
▪ Goals: predict long-term impact of scholarly entities 
▪ Solutions: joint predictive model (iBall) 

▪ Results: 
▪ iBall joint models better than separate versions 
▪ iBall-fast updates efficiently and accurately 

▪ More in paper: 
▪ correctness and error bound analysis 
▪ significance and sensitivity tests
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