FASCINATE: Fast Cross-Layer Dependency Inference on Multi-Layered Networks

Presented by Chen Chen

Chen Chen

Hanghang Tong

Lei Xie

Lei Ying

Qing He

Arizona State University

Multi-Layered Networks are Everywhere!

Arizona State University

Cross-Layer Dependency

 Role: Unique topology characteristic of multi-layered networks

- Importance: Key to multi-layered network mining tasks (e.g. connectivity control, robustness analysis)
- Challenge: Incomplete cross-layer dependencies

Infer Cross-Layer Dependency

Network Dynamics

Incomplete Record

Limited Accessibility

Q1: How to infer the hidden cross-layer dependencies?

Dependencies of Zero-Start nodes

• **Obs.:** New nodes are emerging over time

Q2: How to efficiently infer the dependencies of zero-start nodes?

Roadmap

Motivation

- Q1: Cross-Layer Dependency Inference
 - Q2: Dependencies for Zero-Start Nodes
 - Evaluations
 - Conclusions

Background: A (Simplified) Multi-layered Network Model

- A tuple $\Gamma = \langle G, A, D \rangle$
 - G: layer-layer dependency network
 - A: intra-layer connectivity
 - D: cross-layer dependence

Chen Chen, Jingrui He, Nadya Bliss, Hanghang Tong: **On the Connectivity of Multi-layered Networks: Models, Measures and Optimal Control.** ICDM 2015: 715-720

Q1: Dependency Inference

Key Idea 1: Collaborative Filtering

Users ≈ Routers| Movies ≈ Transportation | Known Ratings ≈ Observed Cross-Layer Dependency

Q1: Dependency Inference

Key Idea 2: Collaborative Filtering with Side Information Two-layered Network

Movie-Movie Similarity ≈ Transportation Network | Social Network ≈ AS Network Known Ratings ≈ Support from Routers to Transportation Network

Node Homophily

- 10 -

Assumption: closely connected entities within each layer tend to have similar latent profiles

Celebrities ≈ Power Plants | Users ≈ Routers | Movies ≈ Transportation Known Ratings, Movie Cast, Fans ≈ Observed Cross-Layer Dependencies

Q1: Dependency Inference

Key Idea 3: Collective Collaborative Filtering

Multi-layered Network

Celebrities ≈ Power Plants | Users ≈ Routers | Movies ≈ Transportation Known Ratings, Movie Cast, Fans ≈ Observed Cross-Layer Dependencies

- 11 -

Optimization Problem

Objective Function:

$$\min_{F_i \ge 0(i=1,\dots,g)} J = \sum_{i,j:G(i,j)=1} \| W_{i,j} \odot (D_{i,j} - F_i F_j') \|_F^2 +$$

Matching observed cross-layer dependencies

$$\alpha \sum_{i} tr(F_{i}'(T_{i} - A_{i})F_{i}) + \beta \sum_{i} ||F_{i}||_{F}^{2}$$

Node homophily Regularization

• **Challenge**: Not jointly convex w.r.t. $F_{i(i=1,...,g)}!$

Hard to find **global** optimal solution!

Q: How to find a local optimal?

FACINATE: Proposed Solution

- Obs.: J becomes convex if we fix all but one (e.g. F_i) latent matrices
- Method: Block coordinate descent

Fixing all other $F_{j(j\neq i)}$, the objective function w.r.t. F_i is

 $\min_{F_i \ge 0} J_i = \sum_{j:G(i,j)=1} \| W_{i,j} \odot (D_{i,j} - F_i F_j') \|_F^2 + \alpha tr(F_i'(T_i - A_i)F_i) + \beta \| F_i \|_F^2$ Cross-layer dependencies that involve Homophily in Layer layer *i* regularization $\begin{bmatrix} J_i \text{ is convex w.r.t. } \mathbf{F_i} \end{bmatrix}$

Multiplicative Update Rules:

 $F_{i}(u,v) \leftarrow F_{i}(u,v) \sqrt{\frac{X(u,v)}{Y(u,v)}} \quad \begin{cases} X = \sum_{j:G(i,j)=1} (W_{i,j} \odot W_{i,j} \odot D_{i,j}) F_{j} + \alpha A_{i} F_{i} \\ Y = \sum_{j:G(i,j)=1} (W_{i,j} \odot W_{i,j} \odot (F_{i} F_{j}')) F_{j} + \alpha T_{i} F_{i} + \beta \end{cases}$

Roadmap

Motivation

- Q1: Cross-Layer Dependency Inference
- Q2: Dependencies for Zero-Start Nodes
 - Evaluations
 - Conclusions

Q2: Dependencies for zero-start nodes

Q2: Dependencies for zero-start nodes

Objective Function with Zero-Start Node:

 $\min_{\widehat{F}_i \ge 0} \widehat{j} = J + J^1 \qquad \begin{cases} J: \text{ objective function without zero-start node} \\ J^1: \alpha \sum_{\nu=1}^{n_1} \mathbf{s}(\nu) \parallel f - \widehat{F}_1(\nu, :) \parallel_2^2 + \parallel f \parallel_2^2 \end{cases}$

Local Search Assumption:

 $\hat{F}_{1(n_1 \times r)} \approx F_1$ $\hat{F}_i \approx F_i \ (i \neq 1)$

Solution:

 $\min_{\hat{F}_i \ge 0} \hat{j} = J + J^1 \quad \implies \quad \min_{f \ge 0} J^1 \text{ sub. to } \hat{F}_{1(n_1 \times r)} = F_1^*$ $f = \frac{\alpha s F_1^*}{\beta + \alpha \sum_{\nu=1}^{n_1} s(\nu)} \quad \text{Only related to zero-start}$ node's local neighbors!

Roadmap

Motivation

- Q1: Cross-Layer Dependency Inference
- Q2: Dependencies for Zero-Start Nodes

Evaluations

Conclusions

Experimental Set-up

Dataset	S: Paper Author Venue SOCIAL	Chemical R3 Gene Disease BIO I	Airpo Airpo R4 Power NFRA-5 INF	ort
Datasets	#Layers	#Nodes	#Links	#CrossLinks
SOCIAL	3	125,344	214,181	188,844
BIO	3	35,631	253,827	75,456
INFRA-5	5	349	379	565
INFRA-3	3	15,126	29,861	28,023,500

- Evaluation Objectives:
 - Effectiveness: How accurate is FACSINATE?
 - Efficiency: How fast is FACSINATE?

Effectiveness of FASCINATE (Q1)

Cross-layer dependency inference on BIO dataset

Methods	MAP	R-MPR	HLU	AUC	Prec@10
Fascinate	0.3979	0.4066	45.1001	0.9369	0.1039
FASCINATE-CLUST	0.3189	0.3898	37.4089	0.9176	0.0857
MulCol	0.3676	0.3954	42.8687	0.9286	0.0986
PairSid	0.3623	0.3403	40.4048	0.8682	0.0941
PairCol	0.3493	0.3153	38.4364	0.8462	0.0889
PairNMF	0.1154	0.1963	15.8486	0.6865	0.0393
PairRec	0.0290	0.2330	3.6179	0.7105	0.0118
FlatNMF	0.2245	0.2900	26.1010	0.8475	0.0615
FlatRec	0.0613	0.3112	8.4858	0.8759	0.0254

FASCINATE performs best!

- 19 -

MAP: Mean Average Precision R-MPR: Reverse Mean Percentage Ranking HLU: Half-Life Utility AUC: Area Under ROC Curve Prec@K: Precision at K

Parameter Studies

FASCINATE is stable in wide range of parameter settings!

Effectiveness of FASCINATE-ZERO (Q2)

FASCINATE-ZERO vs. FASCINATE

FASCINATE-ZERO: similar performance, faster speed!

Scalability

Roadmap

Motivation

- Q1: Cross-layer Dependency Inference
- Q2: Dependencies for Zero-Start Nodes

Evaluations

Conclusions

Conclusions

- **Cross-Layer Dependency Inference**
 - Key Ideas:
 - Collective Collaborative Filtering + Node Homophily
 - Local Search (for zero-start nodes)
 - Methods: FASCINATE & FASCINATE-ZERO
- Results
 - Effectiveness: 8.2%-41.9% over best competitors
 - Efficiency: linear (FASCINATE), sublinear (FASCINATE-ZERO)
- More in paper
 - Variants
 - Convergence analysis & Effectiveness results
 - **Code:** [http://www.public.asu.edu/~cchen211]

