

Is the Whole Greater Than the Sum of Its Parts?

Presenter: Liangyue Li

Joint work with

The whole is greater than the sum of its parts. -- Aristotle

- Whole: a collection of parts
- Parts: individual elements
- Aristotle's hypothesis:
 - whole > sum of parts

Part-Whole in Team Science

Research Team

Sports Team

Film Crew

Sales Team

Whole – Team Parts – Team members

Arizona State University

Part-Whole Beyond Teams

Autonomous System Whole: system Parts: individual drones

Community Question Answering Whole: question Parts: individual answers

Stock Market Whole: DJIA Parts: individual stock

© 2010 Encyclopædia Britannica, Inc.

System Reliability Whole: system Parts: individual component

Outcome of Part-Whole

Whole: Team Part: Members

Whole outcome: Team's performance Part outcome: each member's performance

Whole: Researcher Part: Publications

Whole outcome: h-index Part outcome: #citations of publications

Question: how can we predict the outcome of whole/parts?

Predict the Part-Whole Outcomes

Existing Algorithmic Work

- Separate models for parts and whole
- Joint linear models
- Aristotle's hypothesis: whole>sum(parts)
- Question: how to jointly predict part/whole
 - by leveraging the part-whole relationship beyond the linear models?

Challenges -- Modeling

Question Voting Scot

Question Im

- Nonlinear Part-whole Relationship
 - Max: impact of a question is strongly
 - correlated with that of the **best** answer mpact 1000 Avg. Answer Impact
 - Min: Calsic Wooden Bucket Theory
 - Sparsity: team performance often dominated by a few top-performing team members

10000

Minimum

Question Impact

Challenges – Modeling (con't)

- Part-part Interdependency
 - Parts are connected via underlying network
 - Impact of such interdependency on outcomes
 - Hypothesis-1: similar parts -> similar contribution to whole Hypothesis-2: similar parts -> similar parts outcome

Question: how can we utilize 1. nonlinear part-whole relationship 2. part-part interdependency

Challenges -- Algorithm Non-linearity high complexity Interdependency

Question: how to scale up the computation?

Roadmap

Motivations

PAROLE -- Modeling

- Generic Framework
- Modeling Part-Whole Relationship
- Modeling Part-Part Interdependency
- PAROLE -- Optimization
- Empirical Evaluations
- Conclusions

A Generic Joint Prediction Framework -- PAROLE

Formulation

 $\min J = J_o + J_p + J_{po} + J_{pp} + J_r$

 $+ \gamma(\Omega(w^o) + \Omega(w^p))$

$$= \frac{1}{n_o} \sum_{i=1}^{n_o} L[f(F^o(i,:), w^o), y^o(i))]$$

+
$$\frac{1}{n_p} \sum_{i=1}^{n_p} L[f(F^p(i,:), w^p), y^p(i))]$$

Movie
(Whole)
$$F^{o}(1,:)$$

Actor/Actress
(Part) $F^{p}(5::)$
 $F^{p}(4,:)$
 $F^{p}(1,:)$
 $F^{p}(2,:)$

 J_o : Predictive Model for Whole J_p : Predictive Model for Part

+ $\frac{\alpha}{n_o} \sum_{i=1}^{n_o} h(f(F^o(i,:), w^o), Agg(\phi(o_i))) \int_{p_o} Part-whole Relationship$

+ $\frac{\beta}{n_p} \sum_{i=1}^{n_p} \sum_{j=1}^{n_p} G_{ij}^p g(f(F^p(i,:),w^p), f(F^p(j,:),w^p)) J_{pp}$: Part-part Interdependency

J_r: parameter regularizer

Roadmap

- Motivations
- PAROLE -- Modeling
 - Generic Framework
 - Modeling Part-Whole Relationship
 - Modeling Part-Part Interdependency
- PAROLE -- Optimization
- Empirical Evaluations
- Conclusions

Modeling Part-Whole Relationship

• **Overview**: for each whole entity o_i, define

 $e_i = \mathbf{F}^{o}(i, :) \mathbf{w}^{o} - Agg(o_i)$

- $-e_i$: Measure the difference between
 - predicted whole outcome using whole feature
 - predicted whole outcome using aggregated parts outcome
- Key idea: model part-whole relations by
 - Different loss functions on e_i
 - Different aggregation functions $Agg(\cdot)$

 $Agg(o_i)$

Overview

- Intuition: whole ← (weighted) sum of parts
- **Details**: $e_i = F^o(i,:)w^o - Agg(o_i)$ $Agg(o_i) = \sum_{j \in \phi(o_i)} a_j^i F^p(j,:)w^p$ $- a_j^i$: weight of part *j*'s contribution to the whole o_i 's outcome

Remark:

- Characterize part-whole relationships
 - Use different loss functions on e_i
 - Use different norms on a_i

 $Agg(o_i)$

Linear Part-Whole Relation

- Intuition: Whole ← linear combination of parts
 - some parts play more important roles than the others in contributing to the whole outcome

• **Details**:
$$J_{po} = \frac{\alpha}{2n_o} \sum_{i=1}^{n_o} e_i^2$$

Remark:

 $-a_j^i = 1$: the whole is the sum of its parts

$$-a_j^i = \frac{1}{|o_i|}$$
: average coupling

linea

Sparse Part-Whole Relation

- Intuition: Whole ← a few parts
 - some parts have little or no effect on the whole outcome

• **Details**:
$$J_{po} = \frac{\alpha}{n_o} \sum_{i=1}^{n_o} (\frac{1}{2} e_i^2 + \lambda |\mathbf{a}_i|_1)$$

- Remark:
 - The l_1 norm can shrink some part contributions a_j^i to exactly zero
 - Nonlinear part-whole relation

Ordered Sparse Part-Whole Relation

- Intuition: Whole ← a few top parts
 - team performance is determined by not only a few key members, but also the structural hierarchy between them

• **Details:**
$$J_{po} = \frac{\alpha}{n_o} \sum_{i=1}^{n_o} (\frac{1}{2}e_i^2 + \lambda \Omega_w(\mathbf{a}_i))$$

 $- \Omega_w(x) = \sum_{i=1}^n |x|_{[i]} w_i = \mathbf{w}^T |\mathbf{x}|_{\downarrow}$: ordered
weighted l_1 norm

 $- w \in \mathcal{K}_{m+}$: vector of non-increasing nonnegative weights

Robust Part-Whole Relation

- Intuition: Whole ← parts that are not outliers
 - squared loss is sensitive to outliers.
- Solution: robust regression model

• **Details**:
$$J_{po} = \frac{\alpha}{n_o} \sum_{i=1}^{n_o} \rho(e_i)$$

–
$$\rho(\cdot)$$
 is robust estimator

Maximum Part-Whole Relation

- Intuition: Whole ← max(parts)
 - team performance dominated by the best team member/leader

Details:

- $-Agg(o_i) = \max(parts'outcome)$ [not differentiable]
- Soft max function: $\max(x_1, x_2, \dots, x_n) \approx \ln(\exp(x_1) + \exp(x_2) + \dots + \exp(x_n))$
- Aggregation: $Agg(o_i) = \ln(\sum_{j \in \phi(o_i)} \exp(F^p(j, :)w^p))$

$$J_{po} = \frac{\alpha}{2n_o} \sum_{i=1}^{n_o} e_i^2$$

Summarize Part-Whole Relations

Name	$Agg(o_i)$ Aggregation of parts	J _{po} Sub-objective	Remark
Maximum	$\ln(\sum \exp(F^p(j,:)w^p))$	$\frac{\alpha}{2n_o}\sum e_i^2$	Nonlinear Whole ← max(parts)
Linear	$\sum a_j^i F^p(j,:) w^p$	$\frac{\alpha}{2n_o}\sum e_i^2$	Linear Whole ← linear combination of parts
Sparse	$\sum a_j^i F^p(j,:) w^p$	$\frac{\alpha}{n_o} \sum (\frac{1}{2}e_i^2 + \lambda a_i _1)$	Nonlinear Whole ← a few parts
Ordered Sparse	$\sum a_j^i F^p(j,:) w^p$	$\frac{\alpha}{n_o} \sum (\frac{1}{2}e_i^2 + \lambda \Omega_w(a_i))$	Nonlinear Whole ← a few top parts
Robust	$\sum a_j^i F^p(j,:) w^p$	$\frac{\alpha}{n_o} \sum \rho(e_i)$	Nonlinear Whole ← parts that are not outliers

Roadmap

- Motivations
- PAROLE -- Modeling
 - Generic Framework
 - Modeling Part-Whole Relationship
 - Modeling Part-Part Interdependency
- PAROLE -- Optimization
- Empirical Evaluations
- Conclusions

Modeling Part-Part Interdependency

Effect on the whole outcome

Intuition: closely connected parts might have similar contribution to the whole outcome

– Details:

$$\mathcal{J}_{po} = \frac{\alpha}{n_o} \sum_{i=1}^{n_o} \left[\frac{1}{2} e_i^2 + \lambda |\mathbf{a}_i|_1 + \frac{1}{2} \sum_{k,l \in \phi(o_i)} G_{kl}^p (a_k^i - a_l^i)^2 \right]$$

• Similar parts (large G_{kl}^p)

 \rightarrow similar contributions $(a_k^i \approx a_l^i)$

Modeling Part-Part Interdependency

Effect on the parts outcome

- Intuition: closely connected parts might share similar outcomes themselves
- Details:

$$\mathcal{J}_{pp} = \frac{\beta}{2n_p} \sum_{i=1}^{n_p} \sum_{j=1}^{n_p} G_{ij}^p (\mathbf{F}^p(i,:)\mathbf{w}^p - \mathbf{F}^p(j,:)\mathbf{w}^p)^2 \int_{F^p(1,:)\mathbf{w}_{g_{12}}^p} \int_{G_{14}^p} \int_{$$

• Similar parts (large G_{ij}^p)

 \rightarrow similar predicted outcomes $(F^p(i,:)w^p \approx F^p(j,:)w^p)$

ØM

Roadmap

- Motivations
- PAROLE -- Modeling
- PAROLE -- Optimization
- Empirical Evaluations
- Conclusions

Optimization Solution

Formulation:

- $-J = J_o(w^o) + J_p(w^p) + J_{po}(w^o, w^p, a_j^i) + J_{pp}(w^p) + J_r(w^o, w^p)$
- Observation:
 - not jointly convex w.r.t. w^o , w^p , a_i^j
 - Convex w.r.t. to one block while fixing others

Movie

(Part)

(Whole)

Actor/Actress

Solution: block coordinate descent

 $F^{o}(2,:)$

 $F^{p}(3,:)$

 $F^{p}(2:)$

Block Coordinate Descent

- Three coordinate blocks: w^o , w^p , a_i^i
- Update one block while fixing others
- Update each block

- (proximal) gradient descent

	$\frac{\partial J_{po}}{\partial w^o} \qquad \qquad \frac{\partial J_{po}}{\partial w^p}$		$\frac{\partial J_{po}}{\partial a_i}$ or proximal gradient update	
Maximum Agg	$\frac{\alpha}{n_o} \sum_{i=1}^{n_o} e_i (F^o(i,:))'$	$\frac{\alpha}{n_o} \sum_{i=1}^{n_o} e_i \frac{\sum_{j \in \phi(o_i)} (F^p(j,:))' \tilde{y}_i^p}{\sum_{j \in \phi(o_i)} \tilde{y}_i^p}$	N/A	
Linear Agg	$\frac{\alpha}{n_o} (F^o)' (F^o w^o - M F^p w^p)$	$-\frac{\alpha}{n_o}(F^p)'M'(F^ow^o - MF^pw^p)$	$e_i(-F^p(\phi(o_i),:)w^p) + L_i^p a_i$	
Sparse Agg	$\frac{\alpha}{n_o}(F^o)'(F^ow^o - MF^pw^p)$	$-\frac{\alpha}{n_o}(F^{\rm p})'{\rm M}'(F^{\rm o}{\rm w}^{\rm o}-{\rm M}F^{\rm p}{\rm w}^{\rm p})$	$z = a_i - \tau \left[e_i (-F^p(\phi(o_i), :)w^p) + L_i^p a_i \right]$ $a_i \leftarrow prox_{\lambda \tau l_1}(z)$	
Order Sparse Agg	$\frac{\alpha}{n_o} (F^o)' (F^o w^o - M F^p w^p)$	$-\frac{\alpha}{n_o}(F^{\rm p})'{\rm M}'(F^{\rm o}{\rm w}^{\rm o}-{\rm M}F^{\rm p}{\rm w}^{\rm p})$	$z = a_i - \tau \left[e_i (-F^p(\phi(o_i), :)w^p) + L_i^p a_i \right]$ $a_i \leftarrow prox_{\lambda \tau \Omega_w}(z)$	
Robust Agg	$\frac{\alpha}{n_o} \sum_{i=1}^{n_o} \frac{\partial \rho(e_i)}{\partial e_i} F^o(i,:)'$	$\frac{\alpha}{n_o} \sum_{i=1}^{n_o} \frac{\partial \rho(e_i)}{\partial e_i} \left(-\sum_{j \in \phi(o_i)} a_j F^p(j,:)'\right)$	$\frac{\alpha}{n_o} \left[\frac{\partial \rho(e_i)}{\partial e_i} (-F^p(\phi(o_i), :) w^p) + L_i^p a_i \right]$	

Optimization Properties

THEOREM 4.1. As long as $-\gamma$ is not an eigenvalue of $\frac{dr+1}{n_o} \mathbb{P}^o \otimes \frac{dr}{n_o} \mathbb{P}^{p'} \mathbb{P}^{p} + \frac{dr}{n_o} \mathbb{P}^p \mathbb{M}^r \mathbb{M} \mathbb{P}^p$, Algorithm 1 converges to a coordinate-wise minimum point.

PROOF. It is not hard to see that our objective function \mathcal{J} satiafies the structure of f, with \mathcal{J}_{po} corresponding to $f_0(w^a, w^a, w^a, \frac{d_{j,j}}{d_{j,j}}, \frac{d_{j,j}}{d_{j,j}}, \frac{d_{j,j}}{d_{j,j}}, \frac{d_{j,j}}{d_{j,j}}, \frac{d_{j,j}}{d_{j,j}}, \frac{d_{j,j}}{d_{j,j}}$ and the terms forming $f_0(w^a)$.

the rote of the terms from any $f_{1}^{*}(w^{\mu})$. We have a state of the terms from the form of the domain for all the part-whole veltationships introduced in Sec. 3.3. Assumption (B) is a subfield. Note we show Assumption (B2) also holds using the state of the state left with a function of w^{μ} as $f(w^{\mu}) = \frac{1}{2\pi}\sum_{i=1}^{2\pi} \frac{f(w^{\mu}_{i})}{i_{i}} (W^{\mu}_{i}) = \frac{1}{2\pi}\sum_{i=1}^{2\pi} \frac{f(w^{\mu}_{i})}{i_{i}} = \frac{1}{2\pi}\sum_{i=1}^{2\pi} \frac{f(w^{\mu}_{i})}$

 $g(t) \equiv \hat{f}(tw_1^n + (1-t)w_2^n) = \text{ a constant}$ where the derivate of g(t) = t, the paper

Take the derivate of g(t) w.r.t. t, we have $\frac{dg(t)}{dt} = \left[\left(\frac{\alpha + 1}{n_{oo}} \operatorname{P}^{\alpha^{2}} \operatorname{P}^{\alpha} + y \operatorname{I}\right)(tw_{1}^{\alpha} + (1 - t)w_{2}^{\alpha}) - \frac{1}{n_{o}}(\operatorname{P}^{\alpha})^{s}y^{\alpha}\right]$ $= \frac{\alpha}{n_{o}} \operatorname{P}^{\alpha^{2}} \operatorname{MEP}^{\alpha} w^{\beta} \operatorname{I}_{1} (w^{\alpha} - w^{\alpha}) = 0$

 $-\frac{1}{n_0}e^{\varphi} \mathbf{M} \mathbf{P}^{\varphi} \mathbf{w}^{\varphi}] \cdot (\mathbf{w}_1^{\varphi} - \mathbf{w}_2^{\varphi}) = 0$ This holds for $\forall t \in [0, 1]$ and since \mathbf{w}_1^{φ} and \mathbf{w}_2^{φ} are distinct, we have

 n_0 , $n_0 = 1 + p_0 + 1 + q_0 + 1 + q_0 + q_0 + q_0 + q_0$ When the eigenvalues of $\frac{q_{+1}}{n_0} F^{\sigma'} F^{\sigma}$ do not take value of $-\gamma$, the left matrix $\left(\frac{q_{+1}}{n_0} F^{\sigma'} F^{\sigma} + \gamma\right)$ is of full rank. As a result, $rw_1^{\sigma} + (1 - t)w_1^{\sigma}$ can only take an unique value, making $w_1^{\sigma} = w_2^{\sigma}$, a contradiction.

So $f(w^{-})$ is neuroratate. Next, let us fix w^{α} and various u_{i}^{j} and denote the function of w^{p} as $f(w^{p}) = \frac{1}{2m}\sum_{i=1}^{m} \frac{1}{2m} ((F^{p}(i_{i}).w^{p} - y^{p}(i))^{2} + g_{m_{p}}^{d} \sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{i=1}^{m} ((F^{p}(i_{i}).w^{p})^{2} + g_{m_{p}}^{d} \sum_{i=1}^{m} \sum_{i=1}^{m} \frac{1}{2} (F^{\alpha}(i_{i}).w^{\alpha} - \sum_{i=1}^{m} g_{m_{i}}^{i} - g_{m_{i}$

Convergence and Optimality

 Under mild conditions, the optimization alg converges to a coordinate-wise minimum point

Complexity

- The alg scales linearly w.r.t. the size of part-

whole graph in both time and space

Complexity: $O(n_o d_o + n_p d_p + m_{po} + m_{pp})$ n_o : #whole entities n_p : #part entities m_{po} : #links from whole to parts m_{pp} : #links in part-part network d_o, d_p : feature dimension of whole, parts

details

Roadmap

- Motivations
- PAROLE -- Modeling
- PAROLE -- Optimization
- Empirical Evaluations
- Conclusions

Datasets

Data	Whole	Part	#Whole	#Part
Math	Question (#votes)	Answer (#votes)	16,638	32,876
SO	Question (#votes)	Answer (#votes)	1,966,272	4,282,570
DBLP	Author (h-index)	Paper (#citation)	234,681	129,756
Movie	Movie (# 🚺)	Actors/Actress (#	5,043	37,365

- Setup: sort whole in chronological order, gather first x percent and corresponding parts as training, test on last 10%
- Metric: root mean squared error (RMSE)

Outcome Prediction Performance

Observations

- Joint prediction models > separate models
- 2. Non-linear part-whole relationships (max, Huber, Bisquare, Lasso, OWL) > linear relationships (Sum, Linear)
- 3. Lasso and OWL are the best methods in most cases

Outcome Prediction Performance

Parts

Overall

(a) RMSE of question outcome prediction. (b) RMSE of answer outcome prediction.

(a) RMSE of author outcome prediction.

(b) RMSE of paper outcome prediction.

(c) Overall RMSE.

Arizona State University

Effect of part-part interdependency

- PAROLE-Basic no network information
- Part-part interdependency on whole outcome and parts outcome both boost the performance

Convergence Analysis

PAROLE converges fast (25-30 iterations)

Parameter Sensitivity

Movie

- α controls importance of part-whole relation
- β controls importance of part-part interdependency
- Stable in a relatively large parameter space

Scalability of PAROLE

PAROLE scales linearly w.r.t. part-whole graph size

Roadmap

- Motivations
- PAROLE -- Modeling
- PAROLE -- Optimization
- Empirical Evaluations
- Conclusions

Conclusions -- PAROLE

- Goals: leverage potentially non-linear partwhole relationships for outcome prediction
- Solutions: PAROLE
 - Modeling
 - Part-whole relationship
 - Part-part interdependency
 - Optimization
 - Block coordinate descent

• Scales linearly w.r.t. the part-whole graph size

