

Is the Whole Greater Than the Sum of Its Parts?

Presenter: **Liangyue Li**

Joint work with

The whole is greater than the sum of its parts. -- **Aristotle**

- **Whole**: a collection of parts
- **Parts**: individual elements
- **Aristotle's hypothesis**:
	- whole > sum of parts

Part-Whole in Team Science

Research Team Sports Team

Film Crew **Sales Team**

Whole – Team Parts – Team members

Arizona State University

Part-Whole Beyond Teams

Autonomous System Whole: system Parts: individual drones

Community Question Answering Whole: question Parts: individual answers

Stock Market Whole: DJIA Parts: individual stock

System Reliability Whole: system Parts: individual component

Arizona State University

Outcome of Part-Whole

Whole: Team **Part**: Members

Whole outcome: Team's performance **Part outcome**: each member's performance

Karen Blakeman ∷

STANDING

cellent erv Good verage

RBA Information Services Fax Search tools _ microbiology _ nermaculture_sar Verified email at tha couk set My profile is public set the last **Citations to my articles** - Hala IT strategies for information management Part II: Social media: Ess

Whole: Researcher **Part**: Publications

Whole outcome: h-index **Part outcome:** #citations of publications

Question: how can we predict the outcome of whole/parts?

Predict the Part-Whole Outcomes

- Existing Algorithmic Work
	- Separate models for parts and whole
	- Joint linear models
- Aristotle's hypothesis: whole>sum(parts)
- Question: how to jointly predict part/whole
	- by leveraging the part-whole relationship *beyond* the linear models?

Challenges -- Modeling

Question Voting Scor

Question Im

- Nonlinear Part-whole Relationship
	- **Max**: impact of a question is strongly
		- **correlated with that of the** *best* **answer** Avg. Answer ImpactAvg. Answer Impact
	- **Min: classic Wooden Bucket Theory**
	- **Sparsity**: team performance often dominated by a few top-performing team members

ŝM

Question Impact

Minimum

Challenges – Modeling (con't)

- **Part-part Interdependency**
	- Parts are connected via underlying network
	- Impact of such interdependency on outcomes
	- Hypothesis-1: similar parts -> similar contribution to whole Hypothesis-2: similar parts -> similar parts outcome

Question: how can we utilize 1. nonlinear part-whole relationship 2. part-part interdependency

Challenges -- Algorithm Non-linearity + **Interdependency high complexity**

Question: how to scale up the computation?

Roadmap

- **Motivations**
- **PAROLE -- Modeling**
	- **Generic Framework**
	- Modeling Part-Whole Relationship
	- Modeling Part-Part Interdependency
- **PAROLE -- Optimization**
- **Empirical Evaluations**
- Conclusions

A Generic Joint Prediction Framework -- PAROLE

Formulation

 $\min J = J_o + J_p + J_{po} + J_{pp} + J_r$

$$
= \frac{1}{n_o} \sum_{i=1}^{n_o} L[f(F^o(i,:), w^o), y^o(i))]
$$

$$
+\frac{1}{n_p}\sum_{i=1}^{n_p} L[f(F^p(i,:), w^p), y^p(i))]
$$

Movie

\n
$$
F^{o}(1,1)
$$
\nActive

\nAutor/Actress

\n(Part)

\n
$$
F^{p}(5,1)
$$
\n
$$
F^{p}(4,1)
$$
\n
$$
F^{p}(1,1)
$$
\n
$$
F^{p}(2,1)
$$
\n
$$
F^{p}(3,1)
$$
\n
$$
F^{p}(2,1)
$$

: Part-whole Relationship : **Predictive Model for Whole** $\frac{\alpha}{n_o}\sum_{i=1}^{n_o}h(f(F^o(i,:),w^o), Agg(\phi(o_i)))$: **Predictive Model for Part**

 $\{H\} \to \{H\} \to \{G_{ij}^p g(f(F^p(i,:),w^p),f(F^p(j,:),w^p))\}$ J_{pp} : Part-part Interdependency $\overline{\beta}$ n_p \sum $i=1$ $n_{\bm p}$ \sum $j=1$ \overline{n}_p $G_{ij}^{p}g(f(F^{p}(i,:),w^{p}),f(F^{p}(j,:),w^{p}))$

 $+ \gamma(\Omega(w^o) + \Omega(w^p))$

 $\boldsymbol{J_r}$: parameter regularizer

+

 α

Roadmap

- **Motivations**
- **PAROLE -- Modeling**
	- Generic Framework
	- **Modeling Part-Whole Relationship**

Movie

(Part)

 $\mathcal{F}_{\mathcal{A}}$ \overline{p}

 $(Whole) F^o(1, .)$

 $\boldsymbol{J_o}$

 $(1, \cdot)$

Actor/Actress

 $\bm{J}_{\bm{p}}$

- Modeling Part-Part Interdependency
- **PAROLE -- Optimization**
- **Empirical Evaluations**
- Conclusions

 $F^p(2, :)$

 $F^p(5, \cdot)$ \longrightarrow $F^p(4, \cdot)$

 $\boldsymbol{J_{pp}}$

 $F^p(3, :)$

 $F^{o}(2, :)$

 \bm{V}

 \boldsymbol{v} $\boldsymbol{\theta}$

Modeling Part-Whole Relationship

• Overview: for each whole entity o_i, define

 $e_i = \mathbf{F}^{\mathbf{0}}(i,:) \mathbf{w}^{\mathbf{0}} - \mathrm{Agg}(\mathbf{o}_i)$

- $-e_i$: Measure the difference between
	- predicted whole outcome using whole feature
	- predicted whole outcome using aggregated parts outcome
- **Key idea:** model part-whole relations by
	- Different loss functions on e_i
	- Different aggregation functions $Agg(\cdot)$

 $Agg(o_i)$

Overview

- **Intuition:** whole ← (weighted) sum of parts
- **Details**: $-a_j^i$: weight of part *j*'s contribution to the whole o_i 's outcome $e_i = F^o(i,:)w^o - Agg(o_i)$ $Agg(o_i) = \sum_{j} a_j^{i} F^p(j,:) w^p$ $j \in \phi(o_i)$

Remark:

– Characterize part-whole relationships

- Use different loss functions on e_i
- Use different norms on a_i

 a_1^l i

 $Agg(o_i)$

 $a^{\iota}_{\bm 2}$ i

 a_3^l l

 a_4^l i

Linear Part-Whole Relation

- **Intuition**: Whole ← linear combination of parts
	- some parts play more important roles than the others in contributing to the whole outcome

• Details:
$$
J_{po} = \frac{\alpha}{2n_o} \sum_{i=1}^{n_o} e_i^2
$$

Remark:

$$
-a_j^i = 1
$$
: the whole is the sum of its parts

$$
- a_j^i = \frac{1}{|o_i|}
$$
: average coupling

 a_1^l i

linea

 $a^{\iota}_{\bm 2}$ i

 a_3^l l

 a_4^l i

Sparse Part-Whole Relation

- **Intuition**: Whole ← a few parts
	- some parts have little or no effect on the whole outcome

■ **Details**:
$$
J_{po} = \frac{\alpha}{n_o} \sum_{i=1}^{n_o} (\frac{1}{2} e_i^2 + \lambda |a_i|_1)
$$

- **Remark**:
	- The l_1 norm can shrink some part contributions a_j^i to exactly zero
	- **Nonlinear** part-whole relation

Ordered Sparse Part-Whole Relation

- **Intuition**: Whole ← a few top parts
	- team performance is determined by not only a few key members, but also the structural hierarchy between them

■ **Details:**
$$
J_{po} = \frac{\alpha}{n_o} \sum_{i=1}^{n_o} (\frac{1}{2} e_i^2 + \lambda \Omega_w(a_i))
$$

$$
- \Omega_w(x) = \sum_{i=1}^{n} |x|_{[i]} w_i = w^T |x|_{\downarrow}
$$
 ordered weighted l_1 norm

 $- w \in \mathcal{K}_{m+}$: vector of non-increasing nonnegative weights

Robust Part-Whole Relation

Intuition: Whole ← parts that are not outliers

– squared loss is sensitive to outliers.

Solution: robust regression model

■ Details:
$$
J_{po} = \frac{\alpha}{n_o} \sum_{i=1}^{n_o} \rho(e_i)
$$

$$
-\rho(\cdot)
$$
 is robust estimator

Arizona State University

Maximum Part-Whole Relation max

- **Intuition**: Whole ← max(parts)
	- team performance dominated by the best team member/leader

Details:

- $Agg (o_i) = max(parts' outcome)$ [not differentiable]
- Soft max function: $\max(x_1, x_2, ..., x_n) \approx$ $\ln(\exp(x_1) + \exp(x_2) + \cdots + \exp(x_n))$
- Aggregation: $Agg(o_i) = \ln(\sum_{j \in \phi(o_i)} \exp(F^p(j,:)w^p))$

$$
J_{po} = \frac{\alpha}{2n_o} \sum_{i=1}^{n_o} e_i^2
$$

Summarize Part-Whole Relations

Roadmap

- **Motivations**
- **PAROLE -- Modeling**
	- Generic Framework
	- Modeling Part-Whole Relationship
	- **Modeling Part-Part Interdependency**
- **PAROLE -- Optimization**
- **Empirical Evaluations**
- Conclusions

Modeling Part-Part Interdependency

Effect on the whole outcome

– **Intuition**: closely connected parts might have similar contribution to the whole outcome

– **Details**:

$$
\mathcal{J}_{po} = \frac{\alpha}{n_o} \sum_{i=1}^{n_o} \left[\frac{1}{2} e_i^2 + \lambda |\mathbf{a}_i|_1 + \frac{1}{2} \sum_{k,l \in \phi(o_i)} G_{kl}^p (a_k^i - a_l^i)^2 \right]
$$

• Similar parts (large G_{kl}^p)

 \rightarrow similar contributions $(a_k^i \approx a_l^i)$

Modeling Part-Part Interdependency

Effect on the parts outcome

- **Intuition**: closely connected parts might share similar outcomes themselves
- **Details**:

$$
\mathcal{J}_{pp} = \frac{\beta}{2n_p} \sum_{i=1}^{n_p} \sum_{j=1}^{n_p} G_{ij}^p (\mathbf{F}^p(i,:) \mathbf{w}^p - \mathbf{F}^p(j,:) \mathbf{w}^p)^2
$$

$$
F^p(1,:) \mathbf{w}^p_{G_{12}^p}
$$

• Similar parts (large G_{ij}^p)

 \rightarrow similar predicted outcomes $(F^p(i,:)w^p \approx F^p(j,:)w^p)$

ØD

Roadmap

- **Motivations**
- **PAROLE -- Modeling**
- **PAROLE -- Optimization**
- **Empirical Evaluations**
- Conclusions

Optimization Solution

Formulation:

- $-J = J_o(w^o) + J_p(w^p) + J_{po}(w^o, w^p, a_j^i) +$ $J_{pp}(w^p) + J_r(w^o, w^p)$
- **Observation**:
	- not jointly convex w.r.t. w^o , w^p , $a_i^{\,j}$ j
	- Convex w.r.t. to one block while fixing others

Movie (Whole)

(Part)

£ p $(1, \cdot)$

Actor/Actress

 $\int_{\mathbb{R}} p$

 \overline{p} (5)

 $\bm{\overline{J}_{o}}$

F \overline{o} $(1,.)$

■ Solution: block coordinate descent

 $F^p(2, :)$

 $F^p(5, \cdot)$ $F^p(4, \cdot)$

 J_{p}

 $F^p(3, :)$

 $F^{o}(2, :)$

F

 $J_{\overline{p} \overline{q}}$

Block Coordinate Descent

- **Three coordinate blocks:** w^o , w^p , a_j^i
- Update one block while fixing others
- **Update each block**

– (proximal) gradient descent

	$\frac{\partial J_{po}}{\partial w^o}$	$\frac{\partial J_{po}}{\partial w^p}$	$\frac{\partial J_{po}}{\partial a_i}$ or proximal gradient update
Maximum Agg	$\frac{\alpha}{n_o}\sum_{i=1}^{n_o}e_i(F^o(i,:))^{\prime}$	$\frac{\alpha}{n_o}\sum_{i=1}^{n_o} e_i \frac{\sum_{j \in \phi(o_i)} (F^p(j,:))^{\prime} \tilde{y}_i^p}{\sum_{j \in \phi(o_i)} \tilde{y}_i^p}$	N/A
Linear Agg	$\frac{u}{n_o} (F^o)' (F^o w^o - M F^p w^p)$	$-\frac{\alpha}{n_o}$ (F ^p)'M'(F ^o w ^o – MF ^p w ^p)	$e_i(-F^p(\phi(o_i),:)w^p) + L_i^p a_i$
Sparse Agg	$\frac{\alpha}{n}$ (F ^o)'(F ^o w ^o – MF ^p w ^p)	$-\frac{a}{n_o}$ (F ^p)'M'(F ^o w ^o – MF ^p w ^p)	$z = a_i - \tau [e_i(-F^p(\phi(o_i),:)w^p) + L_i^p a_i]$ $a_i \leftarrow prox_{\lambda \tau l_1}(z)$
Order Sparse Agg	$\frac{u}{n_o}(F^o)'(F^o w^o - M F^p w^p)$	$-\frac{a}{n_e}$ (F ^p)'M'(F ^o w ^o – MF ^p w ^p)	$z = a_i - \tau [e_i(-F^p(\phi(o_i),:)w^p) + L_i^p a_i]$ $a_i \leftarrow prox_{\lambda \tau \Omega_w}(z)$
Robust Agg			$\frac{\alpha}{n_o}\sum_{i=1}^{n_o}\frac{\partial \rho(e_i)}{\partial e_i}F^o(i,:)' \left \frac{\alpha}{n_o}\sum_{i=1}^{n_o}\frac{\partial \rho(e_i)}{\partial e_i}(-\sum_{i\in \phi(o_i)}a_iF^p(j,:)')\right \left \frac{\alpha}{n_o}\left \frac{\partial \rho(e_i)}{\partial e_i}(-F^p(\phi(o_i),:)w^p\right +L_i^pa_i\right)$

Optimization Properties

- **EXCONVERGENCE and Optimality**
	- Under mild conditions, the optimization alg converges to a coordinate-wise minimum point

E Complexity

- The alg scales linearly w.r.t. the size of part
	- whole graph in both time and space

Complexity: $O(n_o d_o + n_p d_p + m_{po} + m_{pp})$ n_o : #whole entities n_p : #part entities m_{po} : #links from whole to parts m_{pp} : #links in part-part network d_o, d_p : feature dimension of whole, parts

details

Roadmap

- **Motivations**
- **PAROLE -- Modeling**
- **PAROLE -- Optimization**
- **Empirical Evaluations**
- Conclusions

Datasets

- **Setup**: sort whole in chronological order, gather first x percent and corresponding parts as training, test on last 10%
- **Metric**: root mean squared error (RMSE)

Outcome Prediction Performance

Observations

- 1. Joint prediction models > separate models
- 2. Non-linear part-whole relationships (max, Huber, Bisquare, Lasso, OWL) > linear relationships (Sum, Linear)
- 3. Lasso and OWL are the best methods in most cases

Outcome Prediction Performance

(a) RMSE of question outcome prediction. (b) RMSE of answer outcome prediction.

(a) RMSE of author outcome prediction.

(b) RMSE of paper outcome prediction.

(c) Overall RMSE.

Arizona State University

Effect of part-part interdependency

- PAROLE-Basic no network information
- **Part-part interdependency on whole outcome** and parts outcome both boost the performance

Convergence Analysis

PAROLE converges fast (25-30 iterations)

Parameter Sensitivity

Movie

-
- \blacksquare β controls importance of part-part interdependency
- **Stable in a relatively large parameter space**

Scalability of PAROLE

PAROLE scales linearly w.r.t. part-whole graph size

Roadmap

- **Motivations**
- **PAROLE -- Modeling**
- **PAROLE -- Optimization**
- **Empirical Evaluations**
- **Conclusions**

Conclusions -- PAROLE

- **Goals**: leverage potentially non-linear partwhole relationships for outcome prediction
- **Solutions: PAROLE**
	- **Modeling**
		- Part-whole relationship
		- Part-part interdependency
	- **Optimization**
		- Block coordinate descent
		- Converges to a coordinate-wise minimum point
		- Scales linearly w.r.t. the part-whole graph size

