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Graph Mining: Applications
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Graph Mining: How To
• Graph Mining Pipeline

• Example: job application classification

• Question: are the mining results fair or biased?
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Algorithmic Fairness in Machine Learning 

• Goal: minimize unintentional bias caused by machine 
learning algorithms
• Existing Measures

– Group fairness
• Disparate impact [1]
• Statistical parity [2]
• Equal odds [3]

– Counterfactual fairness [4]
– Individual fairness [5]

• Limitation: IID assumption in traditional machine learning
– Might be violated by the non-IID nature of graph data 
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Group Fairness: Statistical Parity
• Definition: candidates in protected and unprotected groups have equal probability of being 

assigned to a predicted class !
Pr$ % = ! = Pr' % = !

– Pr$ % = ! : probability of being assigned to ! for protected group; Pr' % = ! is for unprotected 
group

• Illustrative Example: job application classification

• Advantages: 
– Intuitive and well-known
– No impact of sensitive attributes

• Disadvantage: fairness can still be ensured when
– Choose qualified candidates in one group
– Choose candidates randomly in another group
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Individual Fairness
• Problem of Group Fairness: different forms of bias in different settings

– Question: which fairness notion should we apply?
• Principle: similar individuals should receive similar algorithmic outcomes [1]

– Rooted in definition of fairness [2]: lack of favoritism from one side or another
• Definition: given two distance metrics !" and !#, a mapping $ satisfies 

individual fairness if for every %, & in a collection of data '
!" $ % ,$ & ≤ !# %, &

• Illustrative Example:

• Advantage: finer granularity than group fairness
• Disadvantage: hard to find proper distance metrics
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Algorithmic Fairness in Machine Learning 

• Goal: minimize unintentional discrimination caused by 
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Algorithmic Fairness in Graph Mining
• Fair Spectral Clustering [1]

– Fairness notion: disparate impact
• Fair Graph Embedding

– Fairwalk [2], compositional fairness constraints [3]
• Fairness notion: statistical parity

– MONET [4]
• Fairness notion: orthogonality of metadata and graph embedding

• Fair Recommendation
– Information neural recommendation [5]

• Fairness notion: statistical parity
– Fairness for collaborative filtering [6]

• Fairness notion: four metrics that measure the differences in estimation error 
between ground-truth and predictions across protected and unprotected 
groups

• Observation: all of them focus on group-based fairness!
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Compositional Fairness Constraints for 
Graph Embeddings [1]
• Goal: learn graph embeddings that is fair w.r.t. a combination of different 

sensitive attributes

• Fairness definition: mutual information between sensitive attributes and 
embedding is 0

– Imply statistical parity

• Method: adversarial training
– Key idea: train filters for each sensitive attribute so that embeddings fail to predict 

this attribute
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Algorithmic Fairness in Graph Mining
• Fair Spectral Clustering [1]

– Fairness notion: disparate impact
• Fair Graph Embedding
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InFoRM: Individual Fairness on Graph Mining

• Research Questions
Q1. Measures: how to quantitatively measure individual bias?
Q2. Algorithms: how to enforce individual fairness?
Q3. Cost: what is the cost of individual fairness?
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Graph Mining Algorithms
• Graph Mining: An Optimization Perspective

– Input:
• Input graph !
• Model parameters "

– Output: mining results #
• Examples: ranking vectors, class probabilities, embeddings
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minimize loss function 
$(!, #, ")



Mining Task Loss Function !() Mining Result $∗ Parameters

PageRank min
)
*)+ , − . ) + (1 − *) ) − 1 2

3 PageRank vector ) damping factor *
teleportation vector 1

Spectral 
Clustering

min
4
Tr 4+74

s. t. 4+4 = ,
eigenvectors 4 # clusters <

LINE (1st) min
=

>

?@A

B

>

C@A

B

. D, F logJ −= F, : = D, : +

+LMCN~PQ[log J −= F+, : = D, : + ]

embedding matrix = embedding dimension T
# negative samples L

Examples of Classic Graph Mining Algorithm
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Roadmap
• Motivations
• InFoRM Measures
• InFoRM Algorithms

– Debiasing the Input Graph
– Debiasing the Mining Model
– Debiasing the Mining Results

• InFoRM Cost
• Experimental Results
• Conclusions
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Problem Definition: InFoRM Measures
• Questions

– How to determine if the mining 
results are fair?

– How to quantitatively measure 
the overall bias?

• Input
– Node-node similarity matrix !

• Non-negative, symmetric
– Graph mining algorithm "($, &, ')

• Loss function " )
• Additional set of parameters '

– Fairness tolerance parameter *
• Output

– binary decision on whether the 
mining results are fair

– individual bias measure Bias(&, !)
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Measuring Individual Bias: Formulation
• Principle: similar nodes → similar mining results
• Mathematical Formulation

! ", : − ! &, : '( ≤
*

+ ", & ∀", & = 1,… , 0
– Intuition: if + ", & is high, 1

+ 2,3 is small → push ! ", : and ! &, : to be more similar
– Observation: Inequality should hold for every pairs of nodes " and &

• Problem: too restrictive to be fulfilled

• Relaxed Criteria: ∑2567 ∑3567 ! ", : − ! &, : '(+ ", & = 2Tr(!<=+!) ≤ ?* = @

a
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Measuring Individual Bias: Solution

• InFoRM (Individual Fairness on Graph Mining)
– Given (1) a graph mining results !, (2) a symmetric similarity 

matrix " and (3) a constant fairness tolerance #
– ! is individually fair w.r.t. " if it satisfies

Tr !&'"! ≤ #
2

– Overall individual bias is Bias !, " = Tr !&'"!
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Lipschitz Property of Individual Fairness

• Connection to Lipschitz Property
– !",!$ -Lipschitz property [1]: a function % is &', &( -

Lipschitz if it satisfies
&' % ) , % * ≤ ,&( ), * , ∀(/, 0)

• , is Lipschitz constant
– InFoRM naturally satisfies &', &( -Lipschitz property as 

long as
• % ) = 3[), : ]
• &' % ) , % * = 3 ), : − 3[*, : ] ((, &( ), * = '

8 9,:
– Lipschitz constant of InFoRM is ;
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Problem Definition: InFoRM Algorithms

• Question: how to mitigate the bias 
of the mining results?
• Input

– Node-node similarity matrix !
– Graph mining algorithm "($, &, ')
– Individual bias measure Bias(&, !)

• Defined in the previous problem (InFoRM 
Measures)

• Output: a revised mining results &∗
that minimizes

– Loss function "($, &, ')
– Individual bias measure Bias(&, !)
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Mitigating Individual Bias: How To
• Graph Mining Pipeline

• Observation: Bias can be introduced/amplified in each 
component

– Solution: bias can be mitigated in each part
• Algorithmic Frameworks

– Debiasing the input graph
– Debiasing the mining model
– Debiasing the mining results

21
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Debiasing the Input Graph
• Goal: bias mitigation via a pre-processing strategy

• Intuition: learn a new topology of graph !" such that
– !" is as similar to the original graph " as possible 
– Bias of mining results on !" is minimized

• Optimization Problem
min& ' = !" − " *

+ + -Tr &012&

• Challenge: bi-level optimization
– Solution: exploration of KKT conditions [1, 2]
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s. t. Y = argmin& 9(!", &, <) bias measure

consistency in graph topology

[1] Kang, J., & Tong, H.. N2N: Network Derivative Mining. CIKM 2019.
[2] Mei, S., & Zhu, X.. Using Machine Teaching to Identify Optimal Training-Set Attacks on Machine Learners. AAAI 2015.



Debiasing the Input Graph
• Considering the KKT conditions,

min
$

% = '( − ( *
+ + -Tr $012$

• Proposed Method
(1) Fix '( ('( = ( at initialization), find $ using current '(
(2) Fix $, update '( by gradient descent
(3) Iterate between (1) and (2)

• Problem: how to calculate gradient w.r.t. '(?
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Debiasing the Input Graph
• Calculating Gradient

!"
!# = 2 &# − # + ) Tr 2,-./

! ,-
!#[1, 3]

d"
d# =

!"
!# + (

!"
!#)′ − diag

!"
!# , if undirected

!"
!# , if directed

– &- satisfies !-B &#, -, C = 0
– E = Tr 2&-./

F&-
F#[G,H]

is a matrix with E 1, 3 = Tr 2&-./
F&-

F#[G,H]

• Question: how to efficiently calculate E?
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Instantiation #1: PageRank
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• Goal: efficiently calculate ! for PageRank
• Mining Results ": # = 1 − ' ()
• Partial Derivatives !: ! = 2'(+,-##′
• Remarks: ( = / − '0 12

• Time Complexity
– Straightforward: 3(56)
– Ours: 3(82 + 8: + 5)

• 80: number of edges in 0
• 8-: number of edges in -
• 5: number of nodes

×

=
2'(+,-# #′

!



Instantiation #2: Spectral Clustering
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• Goal: efficiently calculate ! for spectral clustering
• Mining Results ": # = eigenvectors with % smallest eigenvalues
• Partial Derivatives !: ! = 2∑()*+ diag 0(123(3(′ 56×8 − 0(123(3(′
• Remarks: :(, 3( = <-th smallest eigenpair, 0( = :(= − 1> ?

• Time Complexity
– Straightforward: @ %A B + D + %ED + %DE
– Ours: @ %A B + D + %ED

×

=
0(123( 3(′

0(123(3(′

vectorize diag 0(123(3(′
and stack it D times

low-rank



Instantiation #3: LINE (1st)

27

• Goal: efficiently calculate ! for LINE (1st)

• Mining Results ": "[$, : ]" (, : ) = log
.(01 2,3 401[3,2])

6768
9/;

467
9/;

68
− log =

– >2 = outdegree of node $, ? = ∑2AB
C >2

D/E
and = = number of negative samples

• Partial Derivatives !: ! = 2G 01 + 01′ ∘ KL − 2diag PKL QC×S
• Remarks

– G() calculates Hadamard inverse, ∘ calculates Hadamard product

– P =
D

E
G TU/E TVB/E

)
+ TQC×S + G TD/E TB/E

)
+ TQC×S with TW $ = >2

W

• Time Complexity
– Straightforward: X(YD)
– Ours: X(ZB + Z[ + Y)

• Z1: number of edges in 1
• ZL: number of edges in L
• Y: number of nodes

vectorize diag PKL and 

stack it Y times
element-wise in-place calculation

stack T Y times



Debiasing the Mining Model
• Goal: bias mitigation during model optimization
• Intuition: optimizing a regularized objective such that 

– Task-specific loss function is minimized
– Bias of mining results as regularization penalty is minimized

• Optimization Problem
min$ % = '(), $, +) + .Tr $123$

• Solution
– General: solve by (stochastic) gradient descent 454$ =

46(),$,7)
4$ + 2.23$

– Task-specific: solve by specific algorithm designed for the graph mining 
problem

• Advantage
– Linear time complexity incurred in computing the gradient
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bias measure
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Debiasing the Mining Model: 
Instantiations
• PageRank

– Objective Function: min
$
%$& ' − ) $ + 1 − % $ − , -

. + /$&01$

– Solution: $∗ = % ) −
4

5
01 $∗ + (1 − %),

• PageRank on new transition matrix ) − 4

5
01

• If 01 = ' − 1, then $∗ = 5

894
) +

4

894
1 $∗ +

8:5

894
,

• Spectral Clustering
– Objective Function: min

;
Tr ;&0); + /Tr ;&01; = Tr(;&0)9>1;)

– Solution: ;∗ = eigenvectors of 0)9>1 with ? smallest eigenvalues
• spectral clustering on an augmented graph ) + >1

• LINE (1st)
– Objective Function: max

BC,BE
log I(BJBK

&) + LMJN∈PQ log I −BJNBK
& − / BK − BJ -

.
1[S, T]

∀S, T = 1,… , X
– Solution: stochastic gradient descent 
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Debiasing the Mining Results
• Goal: bias mitigation via a post-processing strategy
• Intuition: no access to either the input graph or the graph 

mining model
• Optimization Problem

min$ % = $ − ($ )* + ,Tr $/01$
– 2$ is the vanilla mining results

• Solution: (4 + ,1)$∗ = ($
– convex loss function as long as , ≥ 0 → global optima by 9:9$ = 0
– solve by conjugate gradient (or other linear system solvers)

• Advantages
– No knowledge needed on the input graph
– Model-agnostic
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Problem Definition: InFoRM Cost
• Question: how to quantitatively characterize the cost 

of individual fairness?  
• Input

– Vanilla mining results !"
– Debiased mining results "∗

• Learned by the previous problem (InFoRM Algorithms)

• Output: an upper bound of $" − "∗ &
• Debiasing Methods

– Debiasing the input graph
– Debiasing the mining model
– Debiasing the mining results
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depend on specific graph topology/mining model

main focus of this paper



Cost of Debiasing the Mining Results
• Given

– A graph with ! nodes and adjacency matrix "
– A node-node similarity matrix #
– Vanilla mining results $%
– Debiased mining results %∗ = ( + *# +,$%

• If # − " . = /, we have
0% − %∗ . ≤ 2* ! / + 34!5 " 6789 " 0% .

• Observation: the cost of debiasing the mining results depends on
– The number of nodes ! (i.e. size of the input graph)
– The difference / between " and #
– The rank of "
– The largest singular value of "
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could be small due to low-rank structures in real-world graphs 

could be small if " is normalized



Cost of Debiasing the Mining Model:
Case Study on PageRank
• Given

– A graph with ! nodes and symmetrically normalized adjacency matrix "
– A symmetrically normalized node-node similarity matrix #
– Vanilla PageRank vector %̅
– Debiased PageRank vector %∗ = ( + *# +,-.

• If # − " 0 = 1, we have

%̅ − %∗ 0 ≤
2*!
1 − 5 1 + 67!8 " 9:;< "

• Observation: the cost of debiasing PageRank depends on
– The number of nodes ! (i.e. size of the input graph)
– The difference 1 between " and #
– The rank of "
– The largest singular value of "
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upper bounded by 1
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Experimental Settings
• Questions:

RQ1. What is the impact of individual fairness in graph mining performance?
RQ2. How effective are the debiasing methods?
RQ3. How efficient are the debiasing methods?

• Datasets: 5 publicly available real-world datasets

• Baseline Methods: vanilla graph mining algorithm
• Similarity Matrix: Jaccard index, cosine similarity
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Name Nodes Edges
AstroPh 18,772 198,110

CondMat 23,133 93,497

Facebook 22,470 171,002

Twitter 7,126 35,324

PPI 3,890 76,584



Experimental Settings
• Metrics
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Metric Definition

RQ1

Diff =
%∗ − (% )

(% )

difference between fair and vanilla graph mining 
results

PageRank
*+(

%∗

%∗ -
||

(%
(% -

) KL divergence

0123@50 precision

789:@50 normalized discounted cumulative gain

spectral clustering 7;<(=%∗, =%) normalized mutual information

LINE
?@9 − AB9(%∗, (%) area under ROC curve

C1(%∗, (%) F1 score

RQ2 ?2EF32 = 1 −
Tr (%∗)′ JK%

∗

Tr (%′JK (%
degree of reduce in individual bias

RQ3 Running time in seconds running time



Experimental Results
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• Obs.: effective in mitigating bias while preserving the performance of the 
vanilla algorithm with relatively small changes to the original mining results

– Similar observations for spectral clustering and LINE (1st)
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Conclusions
• Problem: InFoRM (individual fairness on graph mining)

– fundamental questions: measures, algorithms, cost
• Solutions: 

– Measures: Bias %, ' = Tr(%,'%)
– Algorithms: debiasing (1) the input graph, (2) the mining model and (3) the 

mining results
– Cost: the upper bound of .% − %∗ 1

• Upper bound on debiasing the mining results
• Case study on debiasing PageRank algorithm

• Results: effective in mitigating individual bias in the graph mining 
results while maintaining the performance of vanilla algorithm

• More details in the paper
– proofs and analysis
– detailed experimental settings
– additional experimental results
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