

InFoRM: Individual Fairness on Graph Mining

Jian Kang Jingrui He Ross Maciejewski Hanghang Tong

Graph Mining: Applications

[1] Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G.. Network Analysis in the Social Sciences. Science 2009.

2 [2] Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H.. Hidden: Hierarchical Dense Subgraph Detection with Application to Financial Fraud Detection. SDM 2017.

[3] Wang, S., He, L., Cao, B., Lu, C. T., Yu, P. S., & Ragin, A. B.. Structural Deep Brain Network Mining. KDD 2017.

[4] Ding, M., Zhou, C., Chen, Q., Yang, H., & Tang, J.. Cognitive Graph for Multi-Hop Reading Comprehension at Scale. ACL 2019.

Graph Mining: How To

Algorithmic Fairness in Machine Learning

- **Goal:** minimize unintentional bias caused by machine learning algorithms
- **Existing Measures**
	- Group fairness
		- Disparate impact [1]
		- Statistical parity [2]
		- Equal odds [3]
	- Counterfactual fairness [4]
	- Individual fairness [5]

4 [1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015. [2] Chouldechova, A., & Roth, A.. The Frontiers of Fairness in Machine Learning. arXiv. [3] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NIPS 2016. [4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NIPS 2017. [5] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.

Group Fairness: Statistical Parity

• **Definition:** candidates in protected and unprotected groups have equal probability of being assigned to a predicted class c

$$
Pr_{+}(y = c) = Pr_{-}(y = c)
$$

- $-$ Pr₊($y = c$): probability of being assigned to c for protected group; Pr₋($y = c$) is for unprotected group
- **Illustrative Example:** job application classification

- **Advantages:**
	- Intuitive and well-known
	- No impact of sensitive attributes
- **Disadvantage:** fairness can still be ensured when
	- Choose qualified candidates in one group
	- Choose candidates randomly in another group

Individual Fairness

- **Problem of Group Fairness:** different forms of bias in different settings
	- **Question:** which fairness notion should we apply?
- **Principle:** similar individuals should receive similar algorithmic outcomes [1]
	- **Rooted in definition of fairness [2]:** lack of favoritism from one side or another
- **Definition:** given two distance metrics d_1 and d_2 , a mapping M satisfies individual fairness if for every x , y in a collection of data ${\cal D}$ $d_1(M(x), M(y)) \leq d_2(x, y)$
- **Illustrative Example:**

- **Advantage:** finer granularity than group fairness
- **Disadvantage:** hard to find proper distance metrics

[1] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012. [2] https://www.merriam-webster.com/dictionary/fairness

Algorithmic Fairness in Machine Learning

• **Goal:** minimize unintentional discrimination caused by machine learning algorithms

• **Existing Measures**

- Group fairness
	- Disparate impact [1]
	- Statistical parity [2]
	- Equal odds [3]
- Counterfactual fairness [4]
- Individual fairness [5]

• **Limitation:** IID assumption in traditional machine learning

– Might be violated by the non-IID nature of graph data

7 [1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015. [2] Chouldechova, A., & Roth, A.. The Frontiers of Fairness in Machine Learning. arXiv. [3] Hardt, M., Price, E., & Srebro, N.. Equality of Opportunity in Supervised Learning. NIPS 2016. [4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R.. Counterfactual Fairness. NIPS 2017. [5] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R.. Fairness through Awareness. ITCS 2012.

Algorithmic Fairness in Graph Mining

- **Fair Spectral Clustering** [1]
	- **Fairness notion:** disparate impact
- **Fair Graph Embedding**
	- Fairwalk [2], compositional fairness constraints [3]
		- **Fairness notion:** statistical parity
	- MONET [4]
		- **Fairness notion:** orthogonality of metadata and graph embedding

• **Fair Recommendation**

- Information neural recommendation [5]
	- **Fairness notion:** statistical parity
- Fairness for collaborative filtering [6]
	- **Fairness notion:** four metrics that measure the differences in estimation error between ground-truth and predictions across protected and unprotected groups

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019. [2] Rahman, T. A., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.

[6] Yao, S., & Huang, B.. Beyond Parity: Fairness Objectives for Collaborative Filtering. NIPS 2017.

^[3] Bose, A. J., & Hamilton, W. L.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

^[4] Palowitch, J., & Perozzi, B.. Monet: Debiasing Graph Embeddings via the Metadata-Orthogonal Training Unit. arXiv.

^[5] Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J.. Enhancement of the Neutrality in Recommendation. RecSys 2012 Workshop.

Compositional Fairness Constraints for Graph Embeddings [1]

- **Goal:** learn graph embeddings that is fair w.r.t. a combination of different sensitive attributes
- **Fairness definition:** mutual information between sensitive attributes and embedding is 0
	- Imply statistical parity
- **Method:** adversarial training
	- **Key idea:** train filters for each sensitive attribute so that embeddings fail to predict this attribute **Sensitive**

[1] Bose, A. J., & Hamilton, W. L.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

Algorithmic Fairness in Graph Mining

- **Fair Spectral Clustering** [1]
	- **Fairness notion:** disparate impact
- **Fair Graph Embedding**
	- Fairwalk [2], compositional fairness constraints [3]
		- **Fairness notion:** statistical parity
	- MONET [4]
		- **Fairness notion:** orthogonality of metadata and graph embedding

• **Fair Recommendation**

- Information neural recommendation [5]
	- **Fairness notion:** statistical parity
- Fairness for collaborative filtering [6]
	- **Fairness notion:** four metrics that measure the differences in estimation error between ground-truth and predictions across protected and unprotected groups

• **Observation:** all of them focus on group-based fairness!

- [1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
- [2] Rahman, T. A., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
- [3] Bose, A. J., & Hamilton, W. L.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
- [4] Palowitch, J., & Perozzi, B.. Monet: Debiasing Graph Embeddings via the Metadata-Orthogonal Training Unit. arXiv.
- [5] Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J.. Enhancement of the Neutrality in Recommendation. RecSys 2012 Workshop.
- [6] Yao, S., & Huang, B.. Beyond Parity: Fairness Objectives for Collaborative Filtering. NIPS 2017.

InFoRM: Individual Fairness on Graph Mining

• **Research Questions**

- **Q1. Measures:** how to quantitatively measure individual bias? **Q2. Algorithms:** how to enforce individual fairness?
- **Q3. Cost:** what is the cost of individual fairness?

Graph Mining Algorithms

• **Graph Mining: An Optimization Perspective**

• Examples: ranking vectors, class probabilities, embeddings

Classic Graph Mining Algorithms

Examples of Classic Graph Mining Algorithm

Roadmap

- Motivations
- InFoRM Measures
- InFoRM Algorithms
	- Debiasing the Input Graph
	- Debiasing the Mining Model
	- Debiasing the Mining Results
- InFoRM Cost
- Experimental Results
- Conclusions

Problem Definition: InFoRM Measures

• **Questions**

- How to determine if the mining results are fair?
- How to quantitatively measure the overall bias?

• **Input**

- $-$ Node-node similarity matrix S
	- Non-negative, symmetric
- Graph mining algorithm $l(\mathbf{A}, \mathbf{Y}, \theta)$
	- Loss function $l(\cdot)$
	- Additional set of parameters θ
- Fairness tolerance parameter ϵ

• **Output**

- binary decision on whether the mining results are fair
- individual bias measure $Bias(Y, S)$

Measuring Individual Bias: Formulation

- **Principle:** similar nodes \rightarrow similar mining results
- **Mathematical Formulation**

$$
\|\mathbf{Y}[i, :]-\mathbf{Y}[j, :] \|_{F}^{2} \leq \frac{\epsilon}{\mathbf{S}[i, j]}\quad \forall i, j = 1, ..., n
$$

- **− Intuition:** if S[i, j] is high, $\frac{\epsilon}{s[i,j]}$ is small \rightarrow push Y[i, :] and Y[j, :] to be more similar
- \blacksquare **Observation:** Inequality should hold for *every* pairs of nodes i and j
	- **Problem:** too restrictive to be fulfilled
- **Relaxed Criteria:** $\sum_{i=1}^{n} \sum_{j=1}^{n} ||Y[i, :] Y[j, :]||_F^2 S[i, j] = 2\text{Tr}(Y' L_S Y) \leq m\epsilon = \delta$

Measuring Individual Bias: Solution

- **InFoRM (Individual Fairness on Graph Mining)**
	- Given (1) a graph mining results Y , (2) a symmetric similarity matrix **S** and (3) a constant fairness tolerance δ
	- $-$ Y is individually fair w.r.t. S if it satisfies

$$
\mathrm{Tr}(\mathbf{Y}'\mathbf{L}_{\mathbf{S}}\mathbf{Y}) \leq \frac{\delta}{2}
$$

- Overall individual bias is $\text{Bias}(\mathbf{Y}, \mathbf{S}) = \text{Tr}(\mathbf{Y}' \mathbf{L}_{\mathbf{S}} \mathbf{Y})$

Lipschitz Property of Individual Fairness

- **Connection to Lipschitz Property**
	- $-$ (\boldsymbol{D}_1 , \boldsymbol{D}_2)-Lipschitz property [1]: a function f is (D_1, D_2) -Lipschitz if it satisfies $D_1(f(i), f(j)) \leq LD_2(i, j), \forall (x, y)$
		- \bullet *L* is Lipschitz constant
	- InFoRM naturally satisfies (D_1, D_2) -Lipschitz property as long as
		- $f(i) = Y[i, :]$
		- $D_1(f(i), f(j)) = ||Y[i, :] Y[j, :]||_2^2, D_2(i, j) = \frac{1}{\varsigma_{ij}}$ $S[i,j]$
	- Lipschitz constant of InFoRM is ϵ

Roadmap

- Motivations \blacksquare
- InFoRM Measures
- InFoRM Algorithms
	- Debiasing the Input Graph
	- Debiasing the Mining Model
	- Debiasing the Mining Results
- InFoRM Cost
- Experimental Results
- Conclusions

Problem Definition: InFoRM Algorithms

- **Question:** how to mitigate the bias of the mining results?
- **Input**
	- $-$ Node-node similarity matrix S
	- Graph mining algorithm $l(\mathbf{A}, \mathbf{Y}, \theta)$
	- $-$ Individual bias measure Bias(Y, S)
		- Defined in the previous problem (InFoRM Measures)
- **Output:** a revised mining results Y^{*} that minimizes
	- Loss function $l(\mathbf{A}, \mathbf{Y}, \theta)$
	- $-$ Individual bias measure Bias(Y, S)

Mitigating Individual Bias: How To

• **Graph Mining Pipeline**

- **Observation:** Bias can be introduced/amplified in each component
	- **Solution:** bias can be mitigated in each part

• **Algorithmic Frameworks**

- Debiasing the input graph
- Debiasing the mining model
- Debiasing the mining results
- mutually complementary

Debiasing the Input Graph

- **Goal:** bias mitigation via a pre-processing strategy
- **Intuition:** learn a new topology of graph \widetilde{A} such that
	- $-\widetilde{A}$ is as similar to the original graph A as possible
	- Bias of mining results on \widetilde{A} is minimized
- **Optimization Problem** min $J = ||\widetilde{A} - A||_F^2$ 2 $+ \alpha Tr(Y'L_S Y$ s.t. $Y = \text{argmin}_{Y} l(\widetilde{A}, Y, \theta)$ bias measure consistency in graph topology
- **Challenge:** bi-level optimization
	- **Solution:** exploration of KKT conditions [1, 2]

Debiasing the Input Graph

• Considering the KKT conditions,

$$
\min_{\mathbf{Y}} \quad J = \left\| \widetilde{\mathbf{A}} - \mathbf{A} \right\|_F^2 + \alpha \operatorname{Tr}(\mathbf{Y}' \mathbf{L}_{\mathbf{S}} \mathbf{Y})
$$
\n
$$
\text{s.t.} \quad \partial_{\mathbf{Y}} l(\widetilde{\mathbf{A}}, \mathbf{Y}, \theta) = 0
$$

- **Proposed Method**
	- (1) Fix \widetilde{A} ($\widetilde{A} = A$ at initialization), find Y using current \widetilde{A} (2) Fix Y, update \widetilde{A} by gradient descent (3) Iterate between (1) and (2)
- **Problem:** how to calculate gradient w.r.t. A?

Debiasing the Input Graph

Instantiation #1: PageRank

- **Goal:** efficiently calculate **H** for PageRank
- Mining Results $Y: r = (1 c)Qe$
- Partial Derivatives H : $H = 2cQ'L_Srr'$
- **Remarks:** $Q = (I cA)^{-1}$
- **Time Complexity**
	- Straightforward: $O(n^3)$
	- Ours: $O(m_1 + m_2 + n)$
		- m_A : number of edges in A
		- m_S : number of edges in S
		- $n:$ number of nodes

Instantiation #2: Spectral Clustering

- **Goal:** efficiently calculate **H** for spectral clustering
- **Mining Results Y:** $U =$ **eigenvectors with k smallest eigenvalues** low-rank
- Partial Derivatives H : $H = 2 \sum_{i=1}^{k}$ (diag (M_i L_S u $_i$ u $_i$ $')$ 1 $_{n \times n}$ M_i L_S u $_i$ q
- **Remarks:** $(\lambda_i, \mathbf{u}_i) = i$ -th smallest eigenpair, $\mathbf{M}_i = (\lambda_i \mathbf{i} \mathbf{L}_A)^+$
- **Time Complexity**
	- Straightforward: $O(k^2(m+n) + k^3n + kn^3)$
	- $-$ Ours: $O(k^2(m+n) + k^3n)$

vectorize diag $({\bf M}_i {\bf L_S u}_i {\bf u}_i)'$ and stack it n times

Instantiation #3: LINE (1st)

- **Goal:** efficiently calculate **H** for LINE (1st)
- Mining Results $Y: Y[i, :]Y[j, :]' = log \frac{T(\widetilde{A}[i,j] + \widetilde{A}[j,i])}{1 x^{3/4} + x^{3/4}}$ $d_i d_j^{3/4} + d_i^{3/4} d_j$ $-\log b$

 $- d_i =$ outdegree of node $i, T = \sum_{i=1}^n d_i^{3/4}$ and $b =$ number of negative samples

- Partial Derivatives H : $H = 2f(\widetilde{A} + \widetilde{A}') \circ L_S 2diag(B L_S) 1_{n \times n}$
- **Remarks**
	- $f(x)$ calculates Hadamard inverse, ∘ calculates Hadamard product

$$
-\mathbf{B} = \frac{3}{4} f \left(\mathbf{d}^{5/4} \left(\mathbf{d}^{-1/4} \right)^{\prime} + \mathbf{d} \mathbf{1}_{n \times n} \right) + f \left(\mathbf{d}^{3/4} \left(\mathbf{d}^{1/4} \right)^{\prime} + \mathbf{d} \mathbf{1}_{n \times n} \right) \text{ with } \mathbf{d}^{x}[i] = d_{i}^{x}
$$

stack $\mathbf d$ *n* times

element-wise in-place calculation

- **Time Complexity**
	- Straightforward: $O(n^3)$
	- Ours: $O(m_1 + m_2 + n)$
		- m_A : number of edges in \bf{A}
		- m_s : number of edges in S
		- \cdot n: number of nodes

vectorize diag (BL_s) and stack it n times

Debiasing the Mining Model

- **Goal:** bias mitigation during model optimization
- **Intuition:** optimizing a regularized objective such that Task-specific loss function is minimized
	-
	- Bias of mining results as regularization penalty is minimized
- **Optimization Problem** min $J = l(A, Y, \theta) + \alpha \text{Tr}(Y' L_S Y)$ task-specific loss function
- **Solution**
	- $-$ **General:** solve by (stochastic) gradient descent $\frac{\partial J}{\partial x}$ ∂Y $=\frac{\partial l(A,Y,\theta)}{\partial Y}+2\alpha L_{S}Y$
	- **Task-specific:** solve by specific algorithm designed for the graph mining problem
- **Advantage**
	- Linear time complexity incurred in computing the gradient

bias measure

Debiasing the Mining Model: Instantiations

- **PageRank**
	- **Objective Function:** min $\lim_{r} c\mathbf{r}'(\mathbf{I}-\mathbf{A})\mathbf{r} + (1-c)\|\mathbf{r}-\mathbf{e}\|_{F}^{2} + \alpha\mathbf{r}'\mathbf{L}_{S}\mathbf{r}$
	- − Solution: $\mathbf{r}^* = c\left(\mathbf{A} \frac{\alpha}{c}\mathbf{L_s}\right)\mathbf{r}^* + (1 c)\mathbf{e}$
		- PageRank on new transition matrix $\mathbf{A} \frac{\alpha}{c} \mathbf{L_S}$
		- If $L_S = I S$, then $\mathbf{r}^* = \left(\frac{c}{1+\alpha}\mathbf{A} + \frac{\alpha}{1+\alpha}S\right)\mathbf{r}^* + \frac{1-c}{1+\alpha}\mathbf{e}$
- **Spectral Clustering**
	- **Objective Function:** min $\mathbf U$ $\text{Tr}(\mathbf{U}'\mathbf{L}_A\mathbf{U}) + \alpha \text{Tr}(\mathbf{U}'\mathbf{L}_S\mathbf{U}) = \text{Tr}(\mathbf{U}'\mathbf{L}_{A+\alpha S}\mathbf{U})$
	- **Solution:** U^* = eigenvectors of $L_{A+\alpha S}$ with k smallest eigenvalues
		- spectral clustering on an augmented graph $A + \alpha S$
- **LINE (1st)**
	- **Objective Function:** max \mathbf{x}_i , \mathbf{x}_j $\log g(\mathbf{x}_j \mathbf{x}'_i) + b \mathbb{E}_{j' \in P_n} [\log g(-\mathbf{x}_{j'} \mathbf{x}'_i)] - \alpha ||\mathbf{x}_i - \mathbf{x}_j||_F^2 \mathbf{S}[i, j]$ $\forall i, i = 1, ..., n$
	- **Solution:** stochastic gradient descent

Debiasing the Mining Results

- **Goal:** bias mitigation via a post-processing strategy
- **Intuition:** no access to either the input graph or the graph mining model
- **Optimization Problem** min $J = ||\mathbf{Y} - \overline{\mathbf{Y}}||_F^2 + \alpha \text{Tr}(\mathbf{Y}' \mathbf{L}_{\mathbf{S}} \mathbf{Y})$ consistency of mining results, convex
	- $-\overline{Y}$ is the vanilla mining results
- Solution: $(\mathbf{I} + \alpha \mathbf{S})\mathbf{Y}^* = \overline{\mathbf{Y}}$
	- convex loss function as long as $\alpha \geq 0 \rightarrow$ global optima by $\frac{\partial J}{\partial x}$ ∂Y $= 0$
	- solve by conjugate gradient (or other linear system solvers)

• **Advantages**

- No knowledge needed on the input graph
- Model-agnostic

bias measure, convex

Roadmap

- Motivations \blacksquare
- InFoRM Measures
- InFoRM Algorithms
	- Debiasing the Input Graph
	- Debiasing the Mining Model
	- Debiasing the Mining Results
- InFoRM Cost
- Experimental Results
- Conclusions

Problem Definition: InFoRM Cost

- **Question:** how to quantitatively characterize the cost of individual fairness?
- **Input**
	- $-$ Vanilla mining results Y
	- Debiased mining results Y^*
		- Learned by the previous problem (InFoRM Algorithms)
- Output: an upper bound of $\|\overline{Y} Y^*\|_F$
- **Debiasing Methods**
	- Debiasing the input graph
	- Debiasing the mining model
	- Debiasing the mining results → main focus of this paper
- depend on specific graph topology/mining model

Cost of Debiasing the Mining Results

• **Given**

- A graph with n nodes and adjacency matrix ${\bf A}$
- $-$ A node-node similarity matrix S
- $-$ Vanilla mining results Y
- $-$ Debiased mining results $\mathbf{Y}^{*}=(\mathbf{I}+\alpha\mathbf{S})^{-1}\overline{\mathbf{Y}}$

• If
$$
||\mathbf{S} - \mathbf{A}||_F = \delta
$$
, we have
\n
$$
||\overline{\mathbf{Y}} - \mathbf{Y}^*||_F \le 2\alpha \sqrt{n} \left(\delta + \sqrt{rank(\mathbf{A})} \sigma_{\max}(\mathbf{A})\right) ||\overline{\mathbf{Y}}||_F
$$

- **Observation:** the cost of debiasing the mining results depends on
	- The number of nodes n (i.e. size of the input graph)
	- The difference δ between A and S
	- $-$ The rank of $A \longrightarrow$ could be small due to low-rank structures in real-world graphs
	- $-$ The largest singular value of $A \longrightarrow$ could be small if A is normalized

Cost of Debiasing the Mining Model: Case Study on PageRank

• **Given**

- A graph with n nodes and symmetrically normalized adjacency matrix ${\bf A}$
- $-$ A symmetrically normalized node-node similarity matrix S
- $-$ Vanilla PageRank vector \bar{r}
- $-$ Debiased PageRank vector ${\bf r}^* = ({\bf I} + \alpha {\bf S})^{-1} \overline{\bf Y}$

• If
$$
||\mathbf{S} - \mathbf{A}||_F = \delta
$$
, we have
\n
$$
||\mathbf{\bar{r}} - \mathbf{r}^*||_F \le \frac{2\alpha n}{1 - c} \Big(\delta + \sqrt{rank(\mathbf{A})} \sigma_{\max}(\mathbf{A}) \Big)
$$

- **Observation:** the cost of debiasing PageRank depends on
	- The number of nodes n (i.e. size of the input graph)
	- The difference δ between A and S
	- $-$ The rank of $A \longrightarrow$ could be small due to low-rank structures in real-world graphs
	- $-$ The largest singular value of $A \longrightarrow$ upper bounded by 1

Roadmap

- Motivations \blacksquare
- InFoRM Measures
- InFoRM Algorithms
	- Debiasing the Input Graph
	- Debiasing the Mining Model
	- Debiasing the Mining Results
- InFoRM Cost
- Experimental Results
- Conclusions

Experimental Settings

• **Questions:**

RQ1. What is the impact of individual fairness in graph mining performance? **RQ2.** How effective are the debiasing methods? **RQ3.** How efficient are the debiasing methods?

• **Datasets:** 5 publicly available real-world datasets

- **Baseline Methods:** vanilla graph mining algorithm
- **Similarity Matrix:** Jaccard index, cosine similarity

Experimental Settings

• Metrics

Experimental Results

 $T_{\rm c}$ 11, a $\Gamma C_{\rm c}$ is a second of $C_{\rm c}$ $D_{\rm c}$ is $D_{\rm c}$, $D_{\rm c}$ is $T_{\rm c}$, and $T_{\rm c}$, and a second contract of $T_{\rm c}$, is the second contract of Γ

- **Obs.:** effective in mitigating bias while preserving the performance of the vanilla algorithm with relatively small changes to the original mining results
	- Similar observations for spectral clustering and LINE (1st)

Roadmap

- Motivations \blacksquare
- InFoRM Measures
- InFoRM Algorithms
	- Debiasing the Input Graph
	- Debiasing the Mining Model
	- Debiasing the Mining Results
- InFoRM Cost
- Experimental Results
- Conclusions

Conclusions

- **Problem:** InFoRM (individual fairness on graph mining)
	- **fundamental questions:** measures, algorithms, cost
- **Solutions:**
	- $-$ **Measures:** Bias(Y, S) = Tr(Y'SY)
	- **Algorithms:** debiasing (1) the input graph, (2) the mining model and (3) the mining results mining results
	- $-$ **Cost:** the upper bound of $\|\overline{Y} Y^*\|_F$
		- Upper bound on debiasing the mining results
		- Case study on debiasing PageRank algorithm
- **Results:** effective in mitigating individual bias in the graph mining results while maintaining the performance of vanilla algorithm
- More details in the paper
	- proofs and analysis
	- detailed experimental settings
	- additional experimental results

Table 2: Effectiveness results for spectral clustering. Lower is better in gray columns. Higher is better in the others.

