

KompaRe: A Knowledge Graph Comparative Reasoning System

Knowledge Graph

- KG = collection of interlinked entities
 - Objects, events or concepts
 - Multiple types of entities and relations exist
- Facts are represented as triples (h, r, t)
 - <'Paris', 'is_a', 'city'>
 - <'Alice', 'is_friend_of', 'Bob'>

Knowledge Graph Applications

- Y. Fang, K. Kuan, J. Lin, C. Tan, and V. Chandrasekhar. 2017. Object Detection Meets Knowledge Graphs(IJCAI-17).
- F. Zhang, J. Yuan, D. Lian, X. Xie, and W. Ma. 2016. Collaborative Knowledge Base Embedding for Recommender Systems(KDD '16).
- S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao. 2018. Answering Natural Language Questions by Subgraph Matching over Knowledge Graphs (TKDE 18).
- P. Shiralkar, A. F Flammini, F. Menczer, and G. Luca. 2017. Finding Streams in Knowledge Graphs to Support Fact Checking (ICDM'17).

Traditional Methods for Fact Checking

Claim: <Berkshire_Hathaway, keyPerson, Warren_Buffett>

Knowledge Stream [Prashant et al. ICDM' 17]

- Limitations
 - Only perform fact checking w.r.t. a single claim
 - None of them supports fact checking w.r.t. multiply claims at the same time
 - G. Ciampaglia, P. Shiralkar, and Rocha. 2015. Computational Fact Checking from Knowledge Networks. (PLOS '15).
 - P. Shiralkar, A. F Flammini, F. Menczer, and G. Luca. 2017. Finding Streams in Knowledge Graphs to Support Fact Checking (ICDM'17).

Comparative Reasoning

- Goal: Find commonality and inconsistency
- An Example

• Advantages: a more complete picture w.r.t. the input clues

• L. Cui, S. Wang, and D. Lee. 2019. SAME : Sentiment-AwareMulti-Modal Embedding for Detecting Fake News. (ASONAM '19).

Outline

- Motivations
- Problem Definitions
 - Key Ideas and Solutions
 - Experiments and Prototype
 - Conclusion

Problem Definition #1: Single claim fact checking

• Goal: Answering whether a claim is true or false

• Input:

- A background knowledge graph <u>G</u>
- A claim as a triple <*s*, *p*, *o* >

s and o are two nodes, p is a relationship.
e.g., <Barack_Obama, graduateFrom, Harvard>

- Output:
 - True or false

Problem Definition #2: Pair-wise fact checking

- Goal: Answering whether two separate claims are consistent
 - Consistent: Both claims are true at the same time
- Input:
 - (1) A knowledge graph G
 - (2) A pair of claims which are denoted as:

$$< s_1, p_1, o_1 > and < s_2, p_2, o_2 >$$

 s_1, o_1, s_2, o_2 are nodes p_1, p_2 are relationships. e.g., <Barack_Obama, majorIn, Political Science> < Barack_Obama, graduatedFrom, Harvard>

- Output:
 - The two facts are consistent or not

Problem Definition #3: Collective fact checking

- **Goal:** Answering whether a query graph is consistent. A query graph consists of a set of inter-connected edges/triples
 - Consistent: All claims are true at the same time
- Input:
 - (1) A knowledge graph G
 - (2) A query graph Q

Barack Obama finished both his bachelor's degree in political science and a master's degree in law at Harvard University

Outline

- Motivations
- Problem Definitions
- Key Ideas and Solutions
 - Experiments and Prototype
 - Conclusion

Challenges and Research Questions

- Goal: Detecting inconsistency inside a pair of claims or a query graph
- **Challenge #1**: How to express the claim?
 - Claim might not exist in the knowledge graph
 - Q1: How to utilize other related information in the knowledge graph
- Challenge #2: How to quantify inconsistency?
 - Too much irrelevant or noise information in the knowledge graph
 - Q2: How to decide the relevant/important information

Key Idea #1: Knowledge segment extraction

- Challenge #1: How to express the claim?
- Our solution:
 - Transform the knowledge graph into a weighted graph
 - Use K-simple shortest paths between two nodes to find knowledge segment
- Knowledge segment: (KS for short)
 - A connection subgraph of the knowledge graph
 - Describes the semantic context of a piece of given clue
 - i.e., a node, a triple or a query graph
- Advantages:
 - Useful when query claim does not directly exist in KG
 - Utilizing the 'background' or related entities

Key Idea #1: Knowledge segment extraction

- Details: Knowledge segment extraction
 - Converting the knowledge graph into a weighted graph according to predicate-predicate similarity

predicate p_i : predicate p_i

Co-occurrence matrix Sim (p_i, p_j) =cosine (row_i, row_j)

• Finding K-simple shortest paths between two nodes

• H. John and M. Matthew and S. Subhash. 2007. Finding the k Shortest Simple Paths: A New Algorithm and Its Implementation. (TALG '07).

Key Idea #2: Inconsistency quantification

- Challenge #2: How to quantify inconsistency?
- Our solution for pair-wise fact checking
 - Influence function
 - Similarity between two knowledge segments
 - Find the nodes, edges, node attributes with the highest influence

- Q. Zhou, L. Li, N. Cao, L. Ying, and H. Tong. 2019. adversarial attacks on multi-network mining: problem definition and fast solutions(ICDM '19)
 - S. Vishwanathan and N. Schraudolph and R. Kondor and M. Borgwardt. 2010. Graph Kernels. (JMLR '10).

Key Idea #2: Inconsistency quantification

- Our solution for collective fact checking
 - Transforming the query graph and knowledge segment graph into two line graphs
 - Given a graph G, its line graph L(G) is a graph such that
 - Each vertex of L(G) represents an edge of G
 - Two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint ("are incident") in G

- Finding the importance of nodes/edges/node attributes with influence function
 ∂Loss ∂Loss ∂Loss
 - Node/edge/node attribute influence $\overline{\partial Node}$ $\overline{\partial Edge}$ $\overline{\partial Node_Attibute}$

Outline

- Motivations
- Problem Definitions
- Key Ideas and Solutions
- Experiments and Prototype
 - Conclusion

System Architecture

User Interface

- Function selection
- Query input
- Visualization

Online Reasoning

- Single claim fact checking
- Pair-wise claim fact checking
- Collective fact checking

Offline Mining

- Predicate-predicate similarity calculation
- Predicate entropy calculation

Experiments

Datasets Summary:

- YAGO
 - 4,295,825 entities
 - 39 predicates
 - 12,430,705 triples
- Covid-19
 - 55,434 entities
 - 5,527,628 triples

• Baseline Methods:

- TransE
- Jaccard Similarity [Liben-Nowell et al. JASIST' 07]
- Knowledge Linker [Ciampaglia et al. PLOS' 15]
- KGMiner [Shi et al. KBS' 16]
 - B. Antoine, U. Nicolas, G. Alberto, W Jason, and Y. Oksana. Translating Embeddings for Modeling Multi-relational Data. (NIPS '13).

[Bordes et al. NeurIPS' 13]

- D. Liben-Nowell and J. Kleinberg, "The link-prediction problem for social networks," (JASIST '2007).
- G. Ciampaglia, P. Shiralkar, and Rocha. Computational Fact Checking from Knowledge Networks. (PLOS '15).
- B. Shi and T. Weninger. Discriminative Predicate Path Mining for Fact Checking in Knowledge Graphs. (KBS'16).

Effectiveness Results

• Pair-wise comparative reasoning

- 10 query sets. For each query set, each of them contains 300 query pairs
- Accuracy = $\frac{N}{M}$, N is the number of queries correctly classified. M is the total number of queries

Dataset	# of queries	TransE	Jaccard	KL	KGMiner	Kompare
Family members positive	300	0.682	0.831	0.618	0.983	0.944
Family members negative	300	0.335	0.169	1.000	1.000	0.941
Graduated college positive	300	0.686	0.335	0.502	0.769	0.794
Graduated college negative	300	0.626	0.993	0.947	0.901	0.994
Live place positive	300	0.567	0.415	0.489	0.834	0.762
Live place negative	300	0.802	0.585	0.907	0.900	0.888
Birth place positive	300	0.590	0.435	0.537	0.698	0.800
Birth place negative	300	0.845	1.000	0.973	0.927	0.927
Work place positive	300	0.751	0.319	0.445	0.698	0.720
Work place negative	300	0.624	0.994	0.942	0.927	0.995
$mean \pm std$	-	0.651 ± 0.424	0.608 ± 0.302	0.736 ± 0.221	0.864 ± 0.105	0.877 ± 0.095

Accuracy of pair-wise comparative reasoning.

Effectiveness Results

Collective comparative reasoning

• YAGO: 6 query sets. Each query of collective comparative reasoning contains 3 edges

Dataset	# of queries	TransE	Jaccard	KL	KGMiner	Kompare
Birth place positive	300	0.542	0.418	0.389	0.678	0.795
Birth place negative	300	0.465	0.996	0.968	0.970	0.829
Live place positive	300	0.448	0.451	0.465	0.635	0.989
Live place negative	300	0.558	1.000	0.860	0.924	0.743
Graduated college positive	300	0.488	0.269	0.335	0.585	0.963
Graduated college negative	300	0.545	0.996	0.928	0.907	0.829
$mean \pm std$	-	0.508 ± 0.045	0.688 ± 0.313	0.658 ± 0.265	0.783 ± 0.155	0.858 ± 0.089

Accuracy of collective comparative reasoning.

• Covid-19: Each query contains less than 8 nodes

Dataset	# of queries	TransE	Jaccard	KL	KGMiner	Kompare
Positive	36	0.667	0.611	1.000	0.694	1.000
Negative	36	0.528	0.361	0.722	0.553	0.863
Average accuracy	-	0.598 ± 0.071	0.486 ± 0.126	0.861 ± 0.138	0.623 ± 0.071	0.932 ± 0.063

Accuracy of Covid-19 dataset.

Effectiveness vs. Running Time

- The runtime for semantic subgraph extraction scales sub-linearly w.r.t. the number of nodes in the knowledge graph
- Average runtime of comparative reasoning is less than 8 seconds

System Demonstration

• System demonstration: https://github.com/lihuiliullh/KompaRe

Outline

- Motivations
- Problem Definitions
- Key Ideas and Solutions
- Experiments and Prototype

Conclusion

Conclusion

- Contribution:
 - We build a knowledge graph comparative reasoning system
- Support functions:
 - Key function (1): single claim fact inconsistency checking
 - Key function (2): pair-wise fact inconsistency checking
 - Key function (3): collective fact inconsistency checking
- Results:
 - High accuracy of fact inconsistency checking
 - Fast running time on large knowledge graphs
 - Sublinear scalability

Thank you !

- KompaRe: A Knowledge Graph Comparative Reasoning System
- System demonstration: https://github.com/lihuiliullh/KompaRe
- Lihui Liu : lihuil2@illinois.edu