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• KG = collection of interlinked entities

• Objects, events or concepts

• Multiple types of entities and relations exist

• Facts are represented as triples (h, r, t)

• <‘Paris’, ‘is_a’, ‘city’>

• <‘Alice’, ‘is_friend_of’, ‘Bob’>

• …
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Knowledge Graph



Knowledge Graph Applications
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Question Answering [S. Hu TKDE-18] Fact Checking [P. Shiralkar ICDM-17]

Recommendation [F. Zhang KDD-16]Computer Vision [Y. Fang IJCAI-17]

• Y. Fang, K. Kuan, J. Lin, C. Tan, and V. Chandrasekhar. 2017. Object Detection Meets Knowledge Graphs(IJCAI-17).
• F. Zhang, J. Yuan, D. Lian, X. Xie, and W. Ma. 2016.  Collaborative Knowledge Base Embedding for Recommender Systems(KDD ’16).
• S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao. 2018. Answering Natural Language Questions by Subgraph Matching over Knowledge

Graphs (TKDE 18).
• P. Shiralkar, A. F Flammini, F. Menczer, and G. Luca. 2017. Finding Streams in Knowledge Graphs to Support Fact Checking (ICDM’17).
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Traditional Methods for Fact Checking

• Limitations
• Only perform fact checking w.r.t. a single claim
• None of them supports fact checking w.r.t. multiply claims at the same time

Claim: <Berkshire_Hathaway, keyPerson, Warren_Buffett>

Knowledge Stream [Prashant et al. ICDM’ 17]

• G. Ciampaglia, P. Shiralkar, and Rocha. 2015. Computational Fact Checking from Knowledge Networks.(PLOS ’15).
• P. Shiralkar, A. F Flammini, F. Menczer, and G. Luca. 2017. Finding Streams in Knowledge Graphs to Support Fact Checking (ICDM’17).



• Goal: Find commonality and inconsistency
• An Example

• Advantages: a more complete picture w.r.t. the input clues
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Comparative Reasoning

• L. Cui, S. Wang, and D. Lee. 2019. SAME : Sentiment-AwareMulti-Modal Embedding for Detecting Fake News. (ASONAM ‘19).
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Outline

§ Motivations
§ Problem Definitions
§ Key Ideas and Solutions
§ Experiments and Prototype
§ Conclusion



• Goal: Answering whether a claim is true or false

• Input:
• A background knowledge graph !
• A claim as a triple <", #, $ >

• Output:  
• True or false
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Problem Definition #1: 
Single claim fact checking

" and $ are two nodes, # is a relationship.
e.g., <Barack_Obama, graduateFrom, Harvard>
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Problem Definition #2: 
Pair-wise fact checking
• Goal: Answering whether two separate claims are consistent

• Consistent: Both claims are true at the same time
• Input:

• (1) A knowledge graph  !
• (2) A pair of claims which are 

denoted as:
<#$,	'$,	($ >	and	<	#-,	'-,	(- >

• Output:  
• The two facts are consistent or not

./, 0/, .1, 01 are nodes 2/, 21 are relationships. 
e.g., <Barack_Obama, majorIn, Political Science> 
< Barack_Obama, graduatedFrom, Harvard>
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Problem Definition #3:
Collective fact checking
• Goal: Answering whether a query graph is consistent. A query 

graph consists of a set of inter-connected edges/triples
• Consistent: All claims are true at the same time

• Input:
• (1) A knowledge graph !
• (2) A query graph "

• Output:  
• True or false

Barack Obama finished both his bachelor’s 
degree in political science and a master’s 

degree in law at Harvard University
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• Goal: Detecting inconsistency inside a pair of claims or a query graph
• Challenge #1: How to express the claim?

• Claim might not exist in the knowledge graph
• Q1: How to utilize other related information in the knowledge graph 

• Challenge #2: How to quantify inconsistency?
• Too much irrelevant or noise information in the knowledge graph
• Q2: How to decide the relevant/important information

Challenges and Research Questions
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• Challenge #1: How to express the claim?

• Our solution:
• Transform the knowledge graph into a weighted graph
• Use K-simple shortest paths between two nodes to find knowledge segment

• Knowledge segment: (KS for short) 
• A connection subgraph of the knowledge graph 

• Describes the semantic context of a piece of given clue 
• i.e., a node, a triple or a query graph

• Advantages: 
• Useful when query claim does not directly exist in KG

• Utilizing the ‘background’ or related entities
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Key Idea #1: Knowledge segment 
extraction

Knowledge Segmentquery
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Key Idea #1: Knowledge segment 
extraction
• Details: Knowledge segment extraction
• Converting the knowledge graph into a weighted graph 

according to predicate-predicate similarity

• Finding K-simple shortest paths between two nodes

3 0 4 0 1
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Co-occurrence matrix
Sim(!", !#)=cosine($%&", $%&#)

Knowledge Segmentquery

• H. John and M. Matthew and S. Subhash. 2007. Finding the k Shortest Simple Paths: A New Algorithm and Its Implementation. (TALG 
’07).

predicate
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Key Idea #2: Inconsistency 
quantification
• Challenge #2: How to quantify inconsistency?
• Our solution for pair-wise fact checking

• Influence function
• Similarity between two knowledge segments
• Find the nodes, edges, node attributes with the highest influence

Random walk 
graph kernel
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• Q. Zhou, L. Li, N. Cao, L. Ying, and H. Tong. 2019. adversarial attacks on multi-network mining: problem definition and fast 
solutions(ICDM ’19)

• S. Vishwanathan and N. Schraudolph and R. Kondor and M. Borgwardt. 2010. Graph Kernels. (JMLR ’10).
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Key Idea #2: Inconsistency 
quantification
• Our solution for collective fact checking

• Transforming the query graph and knowledge segment graph 
into two line graphs
• Given a graph G, its line graph L(G) is a graph such that

• Each vertex of L(G) represents an edge of G
• Two vertices of L(G) are adjacent if and only if their corresponding edges 

share a common endpoint ("are incident") in G

• Finding the importance of nodes/edges/node attributes with 
influence function
• Node/edge/node attribute influence
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System Architecture

User Interface
• Function selection
• Query input
• Visualization

Online Reasoning
• Single claim fact checking
• Pair-wise claim fact checking
• Collective fact checking 

Offline Mining
• Predicate-predicate similarity calculation
• Predicate entropy calculation
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Experiments
Datasets Summary:
• YAGO

• 4,295,825 entities
• 39 predicates
• 12,430,705 triples

• Covid-19
• 55,434 entities
• 5,527,628 triples

• Baseline Methods:
• TransE            [Bordes et al. NeurIPS’ 13]
• Jaccard Similarity      [Liben-Nowell et al. JASIST’ 07]
• Knowledge Linker      [Ciampaglia et al. PLOS’ 15]
• KGMiner [Shi et al. KBS’ 16]

• B. Antoine, U. Nicolas, G. Alberto, W Jason, and Y. Oksana. Translating Embeddings for Modeling Multi-relational Data. (NIPS ’13).
• D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,” (JASIST ’2007).
• G. Ciampaglia, P. Shiralkar, and Rocha. Computational Fact Checking from Knowledge Networks.(PLOS ’15).
• B. Shi and T. Weninger. Discriminative Predicate Path Mining for Fact Checking in Knowledge Graphs. (KBS’16).
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Effectiveness Results

Accuracy of pair-wise comparative reasoning.

• Pair-wise comparative reasoning
• 10 query sets. For each query set, each of them contains 300 query pairs
• Accuracy = !", N is the number of queries correctly classified. M is the total 

number of queries



• Collective comparative reasoning 
• YAGO: 6 query sets. Each query of collective comparative reasoning 

contains 3 edges

• Covid-19: Each query contains less than 8 nodes
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Effectiveness Results

Accuracy of collective comparative reasoning.

Accuracy of Covid-19 dataset.
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Effectiveness vs. Running Time

Subgraph-specific KS extraction Comparative reasoning

• The runtime for semantic subgraph extraction scales sub-linearly 
w.r.t. the number of nodes in the knowledge graph
• Average runtime of comparative reasoning is less than 8 seconds



System Demonstration

• System demonstration: https://github.com/lihuiliullh/KompaRe
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Input box

Fact checking result

Knowledge segment



23

Outline

§ Motivations
§ Problem Definitions
§ Key Ideas and Solutions
§ Experiments and Prototype
§ Conclusion



24

Conclusion
• Contribution: 

• We build a knowledge graph comparative reasoning system

• Support functions:
• Key function (1): single claim fact inconsistency checking
• Key function (2): pair-wise fact inconsistency checking
• Key function (3): collective fact inconsistency checking

• Results:
• High accuracy of fact inconsistency checking 
• Fast running time on large knowledge graphs
• Sublinear scalability
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Thank you !

• KompaRe: A Knowledge Graph Comparative Reasoning System
• System demonstration: https://github.com/lihuiliullh/KompaRe
• Lihui Liu : lihuil2@illinois.edu

mailto:lihuil2@illinois.edu

