
Sylvester Tensor Equation for Multi-Way Association
Boxin Du, Lihui Liu, Hanghang Tong

Department of Computer Science, University of Illinois at Urbana-Champaign

{boxindu2,lihuil2,htong}@illinois.edu

ABSTRACT

How can we identify the same or similar users from a collection of

social network platforms (e.g., Facebook, Twitter, LinkedIn, etc.)?

Which restaurant shall we recommend to a given user at the right

time at the right location? Given a disease, which genes and drugs

are most relevant? Multi-way association, which identifies strongly

correlated node sets from multiple input networks, is the key to

answering these questions. Despite its importance, very few multi-

way association methods exist due to its high complexity. In this pa-

per, we formulate multi-way association as a convex optimization

problem, whose optimal solution can be obtained by a Sylvester

tensor equation. Furthermore, we propose two fast algorithms to

solve the Sylvester tensor equation, with a linear time and space

complexity. We further provide theoretic analysis in terms of the

sensitivity of the Sylvester tensor equation solution. Empirical

evaluations demonstrate the efficacy of the proposed method.

CCS CONCEPTS

• Information systems → Data mining; • Theory of compu-

tation → Graph algorithms analysis.

KEYWORDS

multi-way association; Sylvester tensor equation; multi-network

mining; graph mining

ACM Reference Format:

Boxin Du, Lihui Liu, Hanghang Tong. 2021. Sylvester Tensor Equation for

Multi-Way Association. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD ’21), August 14–18, 2021,

Virtual Event, Singapore. ACM,, 11 pages. https://doi.org/10.1145/3447548.

3467336

1 INTRODUCTION

Multiple networks are ubiquitous in many important applications.

For example, how to link identical or similar users from multiple

social networks (i.e., collective network alignment) [18]? How to

simultaneously recommend items, activities as well as locations to

a user (i.e., high-order recommendation) [11, 19]? In bioinformatics,

how to discover relevant drugs and genes for a specific disease

[2]? In team management, how to optimally assign team members

with the right skills to the right teams for relevant tasks [15, 38]?

The key to answering these questions lies in multi-way association,

which identifies strongly correlated nodes from multiple networks.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467336

For pair-wise association (e.g., network alignment [6, 13, 16, 32]),

it links node-pairs across two input networks. On the contrary,

multi-way association aims to discover the collective association

w.r.t. to a set of nodes. Fig. 1 presents an illustrative example. Given

three social networks, a multi-way association (e.g., the red dashed

box on the left of Fig. 1) is a set of three users (i.e. nodes) from

each of the three input social networks, who are either identical

or similar with each other. We can represent all the multi-way

associations in the form of a 3
rd
-order tensor X (e.g., the right-

most part in Fig. 1), and the weights of the tensor entries measure

the strength of the corresponding multi-way associations. For a

given user, each entry of the corresponding slice of tensor X with

a high weight indicates a pair of users from the other two social

networks who are both strongly associated with the given user.

Likewise, given an activity network, a social network and a location

network, strong multi-way associations inferred from them could

indicate that the corresponding activities, users, and locations are

associated with each other.

Compared with the pair-wise association, much fewer methods

exist for multi-way association due to a number of challenges. First

(C1. Problem Formulation), pair-wise cross-network association

is often formulated as an optimization problem [13, 16, 32]. For

example, soft network alignment [16, 25, 32] can be formulated

as a convex optimization problem based on the alignment con-

sistency principle. However, it is not clear if such a consistency

principle would generalize to multi-way association. Second (C2.

Algorithms), even if we can formulate multi-way association from

the optimization perspective, it is still highly challenging to solve it

in terms of its optimality and sensitivity. Third (C3. Scalability), the

solution space of multi-way association is significantly larger than

pair-wise association. To see this, suppose there are 𝐾 input net-

works, each with 𝑛 nodes. There could be as many as 𝑛𝐾 multi-way

associations. Therefore, another major hurdle is to scale-up the

multi-way association algorithm to large networks. In this paper,

we address these three challenges, and our main contributions are

summarized as follows.

• Formulation.We formulate themulti-way association prob-

lem as an optimization problem and show that it can be

solved optimally by a Sylvester tensor equation.

• New Algorithms. We propose two fast algorithms (SyTE-

Fast-P and SyTE-Fast-A) to solve the Sylvester tensor equa-

tion on plain networks and attributed networks respectively,

with a linear complexity in both time and space.

• Proofs and Analysis. We provide theoretic analysis of the

proposed algorithms in terms of optimality, sensitivity and

complexity.

• Empirical Evaluations. We conduct extensive empirical

evaluations on a diverse set of real networks which demon-

strate the efficacy of the proposed methods.

https://doi.org/10.1145/3447548.3467336
https://doi.org/10.1145/3447548.3467336
https://doi.org/10.1145/3447548.3467336

The rest of the paper is organized as follows. Section 2 gives the

formal definition of the multi-way association problem. Section 3

presents the optimization formulation of the multi-way association

problem and a basic algorithm. Section 4 introduces an accelerated

algorithms for solving the optimization problem on plain networks,

together with some analysis. Section 5 proposes an accelerated al-

gorithm to solve the optimization problem on attributed networks.

The experimental results are presented in Section 7. The related

works are reviewed in Section 8.

Figure 1: An illustrative example of multi-way association

for collective social network alignment. Left (from top to

bottom): three input social networks, such as LinkedIn,

Facebook and Twitter. The red dashed rectangle indicates a

prior anchor link (B in the middle). Right: solution tensor

X of the corresponding Sylvester tensor equation gives the

inferred multi-way association; the highlighted cubes in X

denote four strong multi-way associations. Best viewed in

color. See the details in Sections 2-3.

2 PROBLEM DEFINITION

We first briefly introduce the notations used in the paper. We use

bold uppercase letters to represent matrices, bold lowercase letters

to represent vectors, bold calligraphic letters to represent tensors,

lowercase or uppercase letters in regular font for scalars, and calli-

graphic letters for multi-index (e.g. 𝔏). Specifically, each network

𝐺 is represented by three matrices, including the (weighted) adja-

cency matrix A, the edge attribute matrix E and the node attribute

matrix N. The 𝑖-th element of a vector x is denoted as x𝑖 , the el-
ement (𝑖, 𝑗) of a matrix A is denoted as A(𝑖, 𝑗), and the element

(𝑖1, 𝑖2, ..., 𝑖𝑘) of a tensor X is denoted as X(𝑖1, 𝑖2, ..., 𝑖𝑘). We focus

on categorical edge and node attributes in this paper. E has the

same dimension as its corresponding adjacency matrix A, and
E𝑝 (𝑖, 𝑗) = 1 if the edge (𝑖, 𝑗) has edge attribute 𝑝 . N is a diago-

nal matrix, and N𝑞(𝑖, 𝑖) = 1 if node 𝑖 has node attribute 𝑞. We

use similar notations for tensors as described in [12]. For exam-

ple, ×𝑘 denotes the 𝑘-mode product of tensors, and X
(𝑘)

denotes

the mode-𝑘 unfolding. We define vec(·) and reshape(·, 𝑛1, ..., 𝑛𝐾)

as vectorizing operation and tensorizing operator. In general, we

need to specify orders of vectorization and tensorization in ten-

sor. By default, we let vec(·) and reshape(·, 𝑛1, ..., 𝑛𝐾) be vectoriz-

ing and tensorizing operations along the 1-st mode.
1
For example,

vec(X) = vec(X
(1)

), i.e., column-wise vectorization of the mode-1

unfolding of tensor X. reshape(x, 𝑛1, ..., 𝑛𝐾) = X tensorizes vector

x to a tensor of dimension 𝑛1 ×𝑛2 × ...×𝑛𝐾 by stacking the vectors

1
vec𝑘 (·) will be used to denote vectorization along the 𝑘-th mode when necessary.

of length 𝑛1 as the mode-1 fibers of X. For brevity, we assume that

the 𝐾 input networks share comparable numbers of nodes (i.e.,

𝑂(𝑛1) = ... = 𝑂(𝑛𝐾) = 𝑂(𝑛)) and comparable numbers of edges

(i.e., 𝑂(𝑚1) = ... = 𝑂(𝑚𝐾) = 𝑂(𝑚)). With these notations, we for-

mally define the multi-way association tensor (Definition 1), the

multi-way anchor link tensor (Definition 2), and the multi-way

association inference problem (Problem 1) as follows.

Table 1: Table of Symbols

Symbols Definitions and Descriptions

𝐺 = {A, E,N} An attributed network

A, Ã Original/normalized adjacency matrix

E Edge attribute matrix

N Node attribute matrix

B Multi-way anchor link tensor

X Multi-way association tensor

x, b Vectorized tensor X and B

𝐾 Number of input networks

𝑃,𝑄 Number of edge/node attributes

𝑛𝑖 ,𝑚𝑖 # of nodes/edges of 𝐺𝑖 (𝑖 = 1, ..., 𝐾)

𝑠 Rank of multi-way anchor link tensor

𝑟 Rank used in eigen-decomposition

vec(·) Vectorization operator along 1-st mode

reshape(·, 𝑛1, ..., 𝑛𝐾) Tensorization operator along 1-st mode⊗𝐾
𝑖=1

Kronecker products from index 1 to 𝐾

Definition 1. Multi-way association Tensor

Given a set of 𝐾 networks 𝐺𝑘 (𝑘 = 1, ..., 𝐾). A multi-way association

is the association of a set of nodes (𝑖1, 𝑖2, ..., 𝑖𝐾), where 𝑖1 ∈ 𝐺1, 𝑖2 ∈
𝐺2, ..., 𝑖𝐾 ∈ 𝐺𝐾 . The multi-way association tensor X is of size 𝑛𝐾 ×
𝑛𝐾−1 × ... ×𝑛1. Each entry X(𝑖𝑘 , 𝑖𝑘−1

, ..., 𝑖1) indicates to what extent

the corresponding nodes (𝑖𝑘 , 𝑖𝑘−1
, ..., 𝑖1) are associated with each other.

Definition 2. Multi-way anchor link tensor

Given a set of𝐾 networks𝐺𝑘 (𝑘 = 1, ..., 𝐾). The multi-way association

prior tensor B is of size 𝑛𝐾 × 𝑛𝐾−1 × ... × 𝑛1. If the corresponding

nodes in (𝑖𝐾 , 𝑖𝐾−1, ..., 𝑖1) are known to be associated with each other

a priori, we call (𝑖𝐾 , 𝑖𝐾−1, ..., 𝑖1) an anchor link.

For the example in Fig. 1, only one multi-way anchor link

(marked by the red rectangle) is known a priori, and thus there is

only one non-zero entry inB.
2
Each positive entry inX represents

a multi-way association between a set of three users, one from

each of the three input social networks. By the multi-way associa-

tion inference algorithms that will be introduced in the subsequent

sections, we might find that there are four positive entries in tensor

X (e.g., X(1, 1, 1), X(2, 2, 2), X(3, 3, 3) and X(4, 4, 4)). Each of these

four entries indicates a set of three users who are either identical

or similar with each other.

Problem 1. Multi-way Association Inference

Given: A set of 𝐾 networks {𝐺𝑘 (𝑘 = 1, ..., 𝐾)}, and a multi-way

anchor link tensor B with dimension 𝑛𝐾 × 𝑛𝐾−1 × ... × 𝑛1;

Output: The multi-way association tensorX, whose entries measure

the strength of the association of the corresponding node sets.

2
For clarity, we assume that a sparse anchor link tensor B is given for the rest of

this paper. Nonetheless, such an anchor link tensor is optional, and our proposed

formulation, algorithms and analysis can be naturally adapted in the absence of B. For

example, if no multi-way association is available a prior, we can set B as a uniform

tensor, i.e. each entry is equal to 1.

3 FORMULATION AND BASIC ALGORITHM

3.1 SyTE Formulation

We first formulate Problem 1 from the optimization perspective.

The key idea is to generalize the consistency principle which was

originally designed for pair-wise network alignment [32]. Given

two sets of nodes (𝑖𝐾 , ..., 𝑖1) and (𝑗𝐾 , ..., 𝑗1). Intuitively, the consis-

tency principle requires that the multi-way association of (𝑖𝐾 , ..., 𝑖1)

be consistentwith that of (𝑗𝐾 , ..., 𝑗1) (i.e.,X(𝑖𝐾 , ..., 𝑖1) ≈ X(𝑗𝐾 , ..., 𝑗1)),

if the two node sets are consistent in terms of the following three

aspects. This includes (1) topology consistency, meaning that the

two node sets are strongly connected with each other (i.e., large

A𝑘 (𝑖𝑘 , 𝑗𝑘) (𝑘 = 1, .., 𝐾)); (2) node attribute consistency, meaning that

nodes in each of the two sets share the same attributes respectively

(i.e.,N1(𝑖1, 𝑖1) = · · · = N𝐾 (𝑖𝐾 , 𝑖𝐾) andN1(𝑗1, 𝑗1) = · · · = N𝐾 (𝑗𝐾 , 𝑗𝐾));

and (3) edge attribute consistency, meaning that the two node sets

are connected with each other by the same edge attribute (i.e.,

E1(𝑖1, 𝑗1) = · · · = E𝐾 (𝑖𝐾 , 𝑗𝐾)). Formally, this leads to the following

objective function.

𝐽 (X) =

∑
𝑖1,...,𝑖𝐾
𝑗1,..., 𝑗𝐾

[𝛽(

X(𝑖𝐾 , ..., 𝑖1)√
𝑑(𝑖1, ..., 𝑖𝐾)

− X(𝑗𝐾 , ..., 𝑗1)√
𝑑(𝑗1, ..., 𝑗𝐾)

)
2 𝑡 (A1 ...A𝐾)︸ ︷︷ ︸
Topology consistency

× 𝑓 (𝑖𝑘) × 𝑓 (𝑗𝑘)︸ ︷︷ ︸
Node attribute consistency

× 𝑔(𝑖𝑘 , 𝑗𝑘)︸ ︷︷ ︸
Edge attribute consistency

+ (1 − 2𝛽)(X(𝑖𝐾 , ..., 𝑖1) −B(𝑖𝐾 , ..., 𝑖1))
2︸ ︷︷ ︸

Anchor link regularizer

] (1)

where 𝛽 ∈ (0, 0.5) is a weighting parameter, and functions 𝑓 (·)
and 𝑔(·) denote the node and edge attribute consistency terms.

The topology consistency term for all networks is 𝑡 (A1 ...A𝐾) =

A1(𝑖1, 𝑗1) · · ·A𝐾 (𝑖𝐾 , 𝑗𝐾). Function 𝑑(·) denotes node-set normaliza-

tion. They are defined as 𝑓 (𝑖𝑘) = 1(N1(𝑖1, 𝑖1) = · · · = N𝐾 (𝑖𝐾 , 𝑖𝐾)),

𝑔(𝑖𝑘 , 𝑗𝑘) = 1(E1(𝑖1, 𝑗1) = · · · = E𝐾 (𝑖𝐾 , 𝑗𝐾)), where 1() is the in-

dicator function. 𝑑(𝑖1, ..., 𝑖𝐾) =

∑
𝑗1,..., 𝑗𝐾 A1(𝑖1, 𝑗1) · · ·A𝐾 (𝑖𝐾 , 𝑗𝐾), if

𝑓 (𝑖𝑘) = 𝑓 (𝑗𝑘) = 𝑔(𝑖𝑘 , 𝑗𝑘) = 1; otherwise 𝑑(𝑖1, ..., 𝑖𝐾) = 1. By using

the notation defined in Section 2, the consistency terms 𝑓 (·) and
𝑔(·) can be re-written as 𝑓 (𝑖𝑘) =

∑𝑃
𝑝=1

N𝑝
1

(𝑖1, 𝑖1) · · ·N𝑝
𝐾

(𝑖𝐾 , 𝑖𝐾), and

𝑔(𝑖𝑘 , 𝑗𝑘) =

∑𝑄
𝑞=1

E𝑞
1
(𝑖1, 𝑗1) · · · E𝑞

𝐾
(𝑖𝐾 , 𝑗𝐾).

By vectorizing the multi-way association tensor, the objective

function in Eq. (1) can be re-written in amore concise form. First, let

the tensor indices 𝑖𝐾 , 𝑖𝐾−1, ...𝑖1 and 𝑗𝐾 , 𝑗𝐾−1, ..., 𝑗1 become vector

indices 𝑢 and 𝑣 respectively, where 𝑢 =

∑𝐾−1

𝑘=1

∏𝐾
𝑗=𝑘+1

𝑛 𝑗 (𝑖𝑘 − 1) +

𝑖𝐾 , and 𝑣 =

∑𝐾−1

𝑘=1

∏𝐾
𝑗=𝑘+1

𝑛 𝑗 (𝑗𝑘 − 1) + 𝑗𝐾 . Then, note that 𝑑(·)
in Eq. (1) actually calculates the degree matrix of a Kronecker

graph formed by A1, ...,A𝐾 after filtered by the node and edge

attributes. Specifically, let: W =

∑
𝑖, 𝑗,𝑘 N𝑖

1
(E𝑘

1
⊙ A1)N𝑗

1
⊗ · · · ⊗

N𝑖
𝐾

(E𝑘
𝐾
⊙A𝐾)N𝑗

𝐾
= N(E⊙ (A1 ⊗ . . .⊗A𝐾))N where N =

∑𝑃
𝑖=1

N𝑖
1
⊗

· · ·⊗N𝑖
𝐾
, E =

∑𝑄
𝑘=1

E𝑘
1
⊗· · ·⊗E𝑘

𝐾
, and ⊙ is the element-wise product.

Let D be the diagonal degree matrix of W such that D(𝑢,𝑢) =∑
𝑣 W(𝑢, 𝑣), and let x = vec(X), b = vec(B). Plugging all these into

Eq. (1), we have the following objective function to minimize w.r.t.

multi-way association vector x.
arg min

x
𝐽 (x) = 𝛼xT

(I − W̃)x + (1 − 𝛼)| |x − b| |2
2

(2)

where W̃ = D−1/2WD−1/2
. The first term in Eq. (2) is equivalent to

the first term of summation in Eq. (1) for consistency principles, and

the second term is to encode the prior knowledge of anchor links.

The weighting parameter is reset as 0 < 𝛼 < 1 which balances the

consistency objective and prior knowledge of anchor links. It can

be shown that 𝛼 = 2𝛽 .

3.2 Basic Algorithm

In the appendix, we show that Eq. (2) is a convex problem. Thus,

its fixed point solution gives the optimal solution of Eq. (2). By

taking the derivative of 𝐽 (x) in Eq. (2) w.r.t. x and setting it to zero,

we have

(I − 𝛼W̃)x − (1 − 𝛼)b = 0⇒ x = 𝛼W̃x + (1 − 𝛼)b (3)

By grouping the Kronecker products of𝐾 normalized adjacencyma-

trices in W̃ into two parts A𝑓 = A1⊗· · ·⊗A𝑘 , A𝑠 = A𝑘+1
⊗· · ·⊗A𝐾 ,

𝑘 ∈ (1, 𝐾), the fixed point iteration can be seen as the procedure

on two input networks with adjacency matrices A𝑓 and A𝑠 re-
spectively. We transform the Kronecker products in W̃ to matrix

products (A𝑓 ⊗ A𝑠)v = A𝑠VAT
𝑓
, where v = vec(V) = ND−1/2x.

Thus the fixed point method (referred to as Basic Algorithm) can

be applied to obtain the solution x. The details of Basic Algorithm,

together with its convergence, optimality and complexity analysis

are given in the appendix. In a nutshell, we can show that the Basic

Algorithm (summarized in Alg. 3 in the appendix) converges to the

closed-form solution of Eq. (3) with a polynomial time complexity

w.r.t. the number of nodes and edges of the input networks. Note

that Basic Algorithm is not the major focus of this paper because

of its high complexity.

3.3 Sylvester Tensor Equation

In order to speed-up and scale-up the computation, we reformulate

Eq. (3) as follows. Note that Eq. (3) is a linear system w.r.t. vector

variable x. Considering the definition of W, the linear system in

Eq. (3) can be re-written as the following Sylvester tensor equation

by the property of tensor mode product and Kronecker product

(i.e., X ×1 Ã𝐾 ×2 · · · ×𝐾 Ã1 ⇔ (Ã1 ⊗ · · · ⊗ Ã𝐾)vec(X) [12]).

X − 𝛼
∑
𝑜,𝑝,𝑞

X ×1 Ã(𝑜,𝑝,𝑞)

𝐾
×2 · · · ×𝐾 Ã(𝑜,𝑝,𝑞)

1
− (1 − 𝛼)B = 0 (4)

where Ã(𝑜,𝑝,𝑞)

𝑖
= (D−1/2

𝑖
N𝑝
𝑖

)(E𝑜
𝑖
⊙A𝑖)(D

−1/2

𝑖
N𝑞
𝑖

). When neither node

nor edge attributes are available (i.e., plain networks), Eq. (4) de-

generates into the following Sylvester tensor equation.

X − 𝛼X ×1 Ã𝐾 ×2 · · · ×𝐾 Ã1 − (1 − 𝛼)B = 0 (5)

where Ã𝑖 = (D−1/2

𝑖
)A𝑖 (D

−1/2

𝑖
).

In the next two sections, we will present two fast algorithms to

solve Eq. (5) and Eq. (4), respectively.

4 SYTE-FAST-P FOR PLAIN NETWORKS

In this section, we present the proposed fast algorithm, SyTE-Fast-P

for solving Eq. (5) (i.e., plain networks).

4.1 Intuitions and Key Ideas

In order to solve Eq. (5) efficiently, the key idea is to decompose its

corresponding linear system into a series of subsystems, and then

to solve each of them by a tensorized Krylov subspace method. To

simplify the description, we absorb the scalar 𝛼 and 1−𝛼 of Eq. (3)

into the matrix W̃ and vector b respectively to have the following

concise equation.

(I − Ã1 ⊗ · · · ⊗ Ã𝐾)x = b (6)

where we let b B −(1 − 𝛼)b, and Ã𝑖 B 𝛼1/𝐾 Ã𝑖 ,∀𝑖 ∈ [1, 𝐾]. The

coefficient matrix of this linear system is strictly diagonally domi-

nant and positive definite. Therefore, the system is solvable with

a unique solution [22]. However, the coefficient matrix in this

linear system contains the Kronecker product. A direct solver

such as Krylov subspace method would cost at least 𝑂(𝑁 2
) where

𝑁 = 𝑛𝐾 >> 𝑛 is the dimension of the linear system in Eq. (6), due

to the construction of the orthonormal basis of the Krylov subspace

[7]. To address this issue, the key idea is to use a tensorized Krylov

subspace, and let the solution tensor reside in the tensorized Krylov

subspace, so as to avoid explicit calculation of the orthonormal

basis. In this way, the solution can be represented in a Tucker

decomposition form without the explicit calculation, which will

reduce the time complexity from 𝑂(𝑁 2
) to 𝑂(𝑐1𝑚 + 𝑐2𝑙

𝐾
) and re-

duce the space complexity from 𝑂(𝑁 + 𝑀) to 𝑂(𝑐3𝑛 + 𝐾𝑚 + 𝑙2𝐾).

Here, 𝑐1, 𝑐2, 𝑐3, 𝑙 are small constants, and 𝐾 can also be regarded as

a constant because it is often much smaller than both 𝑛 and𝑚 (see

details below).

4.2 SyTE-Fast-P Algorithm

Firstly, notice that tensor B contains 𝑠 non-zero entries (i.e., 𝑠

known anchor links). We represent B as the summation of the

outer product of the indicator vectors B =

∑𝑠
𝑖=1

b(𝑖)

𝐾
◦ · · · ◦ b(𝑖)

1

where b(𝑖)

𝑗
is an indicator vector of the 𝑖−th non-zero entry in B

corresponding to mode 𝑗 . TensorB can be further re-written as its

vector form b =

∑𝑠
𝑖=1

b(𝑖)

1
⊗ · · · ⊗ b(𝑖)

𝐾
. For the example in Fig. 1, the

anchor link tensor B only contains one non-zero entry at (4, 4, 4).

It can be shown that B = [0, 0, 0, 1]
T ◦ [0, 0, 0, 1]

T ◦ [0, 0, 0, 1]
T
, and

b = [0, 0, 0, 1]
T⊗[0, 0, 0, 1]

T⊗[0, 0, 0, 1]
T
. Then, Eq. (6) is decomposed

into the following subsystems.

(I − Ã1 ⊗ · · · ⊗ Ã𝐾)x𝑖 =

𝐾⊗
𝑗=1

b(𝑖)

𝑗
(𝑖 = 1, ..., 𝑠) (7)

Secondly, instead of directly constructing the Krylov subspace

K𝐿(A×, b) where A× denotes I− Ã1 ⊗ · · · ⊗ Ã𝐾 , and 𝐿 is the dimen-

sion of the Krylov subspace, we construct the Krylov subspaces for

Ã1, ..., Ã𝐾 separately as K𝑙 (Ã1, b1), ...,K𝑙 (Ã𝐾 , b𝐾). Then, we use

the Kronecker product of these 𝐾 Krylov subspaces as the new

subspace. Using the same notation as [14], we define the tensorized

Krylov subspace as follows.

K⊗
𝔏

(A×, b) := 𝑠𝑝𝑎𝑛(K𝑙1 (Ã1, b1) ⊗ · · · ⊗ K𝑙𝐾 (Ã𝐾 , b𝐾)) (8)

where 𝔏 = (𝑙1, ..., 𝑙𝐾) is a multi-index. For each Krylov subspace

K𝑙𝑖 (Ã𝑖 , b𝑖), we use the standard Arnoldi method
3
to obtain the

orthonormal basis represented in U with orthonormal columns.

Specifically, the Arnoldi method gives the Hessenberg matrix H̃𝑖 =

UT
𝑙𝑖+1

Ã𝑖U𝑙𝑖 of size (𝑙𝑖 + 1) × 𝑙𝑖 . Note that 𝑙𝑖 is often much smaller

than 𝑛𝑖 (i.e., 𝑙𝑖 ≪ 𝑛𝑖). We can prove that (1)

⊗𝐾
𝑖=1

U𝑙𝑖 forms the

orthonormal basis of K⊗
𝔏

(A×, b), and (2) the original Krylov sub-

space K𝐿(A×, b) is contained in the tensorized Krylov subspace

K⊗
𝔏

(A×, b) (see details in the appendix).

3
Lanczos algorithm could also be adopted here alternatively.

Thirdly, we can further prove that by using a tensorized Krylov

subspace based generalized minimal residual method, each subsys-

tem (I − Ã1 ⊗ · · · ⊗ Ã𝐾)x𝑖 =

⊗𝐾
𝑗=1

b(𝑖)

𝑗
in Eq. (7) can be solved by

the following linear system, whose scale is much smaller than the

original linear system:

(

𝐾⊗
𝑖=1

I𝑙𝑖+1,𝑙𝑖 −
𝐾⊗
𝑖=1

H̃𝑖)y =

𝐾⊗
𝑖=1

UT
𝑙𝑖+1

r0 (9)

Note that the coefficient matrix has a Hessenberg-like structure.

Thus, it can be solved by the back-substitute method. Putting every-

thing together, the proposed SyTE-Fast-P algorithm is presented

in Algorithm 1. We use the same dimension for all the Krylov sub-

spaces for notation simplicity. Note that x = x1 + · · · + x𝐾 , where
each x𝑖 = ⊗𝐾

𝑗=1
U(𝑖)

𝑙 𝑗
y𝑖 , and X = reshape(x, 𝑛𝐾 , ..., 𝑛1).

Algorithm 1 SyTE-Fast-P Algorithm

Input: 𝐾 normalized adjacency matrices of input networks Ã1, ...,

Ã𝐾 , tensor B or b = vec(B) with 𝑠 known multi-way anchor

links, Krylov subspace size 𝑙 > 0;

Output: The solution tensor X of Eq. (6).

1: Decompose b for Eq. (7) to obtain {b(𝑖)

𝑗
} 𝑗 ∈[1,𝐾],𝑖∈[1,𝑠];

2: for 𝑖 = 1, ..., 𝑠 do

3: Initialize x𝑖 as a zero vector;

4: for 𝑗 = 1, ..., 𝐾 do

5: Construct K𝑙 (I𝑗 − Ã𝑗 , b𝑗);
6: Obtain H̃(𝑖)

𝑗
, U(𝑖)

𝑙 𝑗
, and U(𝑖)

𝑙 𝑗+1
;

7: end for

8: Solve Eq. (9) to obtain y𝑖 ;
9: end for

10: Return implicit solution {y𝑖 , {U(𝑖)

𝑙 𝑗
}𝐾
𝑗=1
}𝑠
𝑖=1

.

4.3 Proofs and Analysis

We give the following theorem for the complexity of the proposed

SyTE-Fast-P algorithm. In the analysis of complexity, for notation

simplicity, we assume all input networks share the same number

of nodes 𝑛 and number of edges𝑚.

Theorem 1. Complexity of SyTE-Fast-P. The time complexity

of Algorithm 1 is 𝑂(𝑠𝐾𝑙𝑚 + 𝑠𝑙𝐾). The space complexity of Algorithm

1 is 𝑂(𝐾𝑚 + 𝑙2𝐾 + 𝐾𝑙𝑛).

Proof. The Arnoldi process takes 𝑂(𝑙𝑚) for one iteration, and

the number of total iteration is 𝑠𝐾 . Thus the complexity for Arnoldi

process is𝑂(𝑠𝐾𝑙𝑚). Solving 𝑠 linear systems of Eq. (9) takes𝑂(𝑠𝑙𝐾),

which is linear w.r.t. the size of the linear system, thanks to the

back-substitute method. The overall time complexity for SyTE-

Fast-P is 𝑂(𝑠𝐾𝑙𝑚 + 𝑠𝑙𝐾).

For space complexity, storing𝐾 adjacencymatrices takes𝑂(𝐾𝑚).

Storing the Hessenberg matrix for each Eq. (9) in the outer iteration

takes 𝑂(𝑙2𝐾). Storing the orthonomal basis U(𝑖)

𝑙 𝑗
for the outer itera-

tion takes𝑂(𝐾𝑙𝑛). Overall, the space complexity is𝑂(𝐾𝑚+𝑙2𝐾+𝐾𝑙𝑛)

for SyTE-Fast-P. □

Remark. Since 𝐾, 𝑙, 𝑠 are usually much smaller than𝑚,𝑛 (𝐾, 𝑙, 𝑠

are treated as constants
4
in the big-O notation), Alg. 1 has a much

smaller time complexity than the Basic Algorithm (Alg. 3) whose

4
We assume that the number of input networks 𝐾 is a small non-variant constant.

time complexity is 𝑂(𝑄𝑚 ⌊𝐾/2⌋𝑛 ⌊𝐾/2⌋ · 𝑡𝑚𝑎𝑥 + 𝑛𝐾). Furthermore,

both the space and time complexities of Alg. 1 is linear w.r.t. the

size (i.e., the number of nodes and edges) of input networks.

5 SYTE-FAST-A FOR ATTRIBUTED

NETWORKS

In this section, we present a fast algorithm to solve Eq. (4).

5.1 Intuitions and Key Ideas

Here, we present a fast solver when the node attributes are avail-

able. Notice that SyTE-Fast-P can not be directly applied because

theWmatrix in Eq. (2) contains summations of Kronecker products.

To address this issue, we have the following key observations.

Firstly, WLOG, assume that nodes in each network are reordered

such that the nodes with the same node attributes have adjacent

indices. For the example in Fig. 1, assume that nodes {1, 2} and
{3, 4} in 𝐺𝑖 ,∀𝑖 ∈ [1, 3] have the same attributes respectively. We

observe that the solution tensor of Eq. (4) has a block-diagonal

structure, which means that the non-zero entries in the solution

tensor X only exist in the diagonal block tensors. Intuitively, this

is because the diagonal blocks in the solution tensor correspond

to nodes across networks with the same node attributes, mean-

while the off-diagonal blocks correspond to nodes across networks

with different node attributes. This indicates that Eq. (4) could be

decomposed into a series of subsystems by node attributes.

Secondly, based on the above observation, we only need to solve

the diagonal tensors by block coordinate descent (BCD) method.

The off-diagonal entries inX can be set equal to the corresponding

entries with the same indices in B. The linear system for the

example in Fig. 1 can be decomposed into:

X
1,1,1 − [X

1,1,1 ×1 Ã11

1
... ×3 Ã11

3
+ X

2,2,2 ×1 Ã12

1
... ×3 Ã12

3
]︸ ︷︷ ︸

C
1,1,1
2,2,2

= B
1,1,1

X
2,2,2 − [X

2,2,2 ×1 Ã22

1
... ×3 Ã22

3
+ X

1,1,1 ×1 Ã21

1
... ×3 Ã21

3
]︸ ︷︷ ︸

C
2,2,2
1,1,1

= B
2,2,2

with X
𝑖 𝑗𝑘

= B𝑖 𝑗𝑘 ,∀𝑖 ̸= 𝑗 or 𝑗 ̸= 𝑘 or 𝑖 ̸= 𝑘 . X1,1,1
and X

2,2,2
denote

the (1, 1, 1)−th and (2, 2, 2)−th tensor block respectively (similar

notation forB). Ã11
= D−1/2N1AN1D−1/2

denotes the normalized

adjacency matrix, filtered by the first node attribute. The parameter

𝛼 , together with (1−𝛼) onB, is absorbed into tensors for notation

simplicity.C
2,2,2
1,1,1

represents the contribution of block variableX
1,1,1

to X
2,2,2

, and the similar notation applies for C
1,1,1
2,2,2

.

Thirdly, BCD requires that each X
𝑖 ...𝑖

be computed explicitly

(e.g., by the Basic Algorithm), because each block variable is needed

to calculate other block variables. Although BCD is faster than

applying the Basic Algorithm on the whole variable tensor, the

computational complexity is still polynomial. To address this issue,

the idea is to omit the contribution of diagonal blocks from other

subsystems (e.g. C
2,2,2
1,1,1

and C
1,1,1
2,2,2

) for each subsystem. In this way,

we only need one single iteration by Alg. 1 to approximately solve

each diagonal block independently.

5.2 SyTE-Fast-A Algorithm

Generally speaking, Eq. (4) with node attributes can be decomposed

as: X
𝑖 ...𝑖 − ∑

𝑗=1 X
𝑗 ... 𝑗 ×1 Ã𝑖 𝑗

1
... ×𝐾 Ã𝑖 𝑗

𝐾
= B𝑖 ...𝑖 , where the off-

diagonal variant blocks are equal to the corresponding blocks in

B. It can be solved by approximated block coordinate descent as

follows. By the exact BCD, each iteration should solve:

X
𝑖 ...𝑖 −X𝑖 ...𝑖 ×1 Ã𝑖𝑖

1
... ×𝐾 Ã𝑖𝑖𝐾 = B̂

𝑖 ...𝑖
(11)

where B̂
𝑖 ...𝑖

= B𝑖 ...𝑖 +

∑
𝑗 ̸=𝑖 X

𝑗 ... 𝑗 ×1 Ã𝑖 𝑗
1
... ×𝐾 Ã𝑖 𝑗

𝐾
, and it can be

viewed as the updated B𝑖 ...𝑖 tensor. If we approximate B̂
𝑖 ...𝑖

=

B𝑖 ...𝑖 , each subsystem can be solved in one single iteration. The

SyTE-Fast-A algorithm is summarized in Alg. 2. Similar to Alg. 1,

line 6 returns the implicit solution of diagonal block variables.

Algorithm 2 SyTE-Fast-A Algorithm

Input: Normalized adjacency matrices Ã1, ..., Ã𝐾 ; node attribute
matrices N1, ...,N𝐾 ; Krylov subspace size 𝑙 > 0; tensor B or

b = vec(B);

Output: The solution tensor X of Equation (4).

1: Construct block matrices Ã𝑖 𝑗
1
,..., Ã𝑖 𝑗

𝐾
, block tensor B𝑖 ...𝑖 , ∀1 ≤

𝑖, 𝑗 ≤ 𝑃 by the node attribute matrices N1,..., N𝐾 ;
2: Initialize X

𝑖 ...𝑖
, ∀𝑖 ∈ [1, 𝐾];

3: for 𝑝 = 1, ..., 𝑃 do

4: Solve Eq. (11) by Algorithm 1 to obtain {y𝑖 , {U𝑖𝑙 𝑗 }
𝐾
𝑗=1
}𝑠
𝑖=1

;

5: end for

6: Return implicit solution {{y𝑝
𝑖
, {U𝑖,𝑝

𝑙 𝑗
}𝐾
𝑗=1
}𝑠
𝑖=1
}𝑃
𝑝=1

.

5.3 Proofs and Analysis

Next, we provide the complexity analysis of the proposed algorithm.

Let 𝑚𝑖 , 𝑛𝑖 and 𝑠𝑖 (𝑖 ∈ [1, 𝑃]) be the number of edges/nodes in

Ã𝑖𝑖
𝑘
(𝑘 ∈ [1, 𝐾]), and the number of non-zero entries in B𝑖 ...𝑖 ,

respectively. For notation simplicity, we assume𝑚𝑖 ,∀𝑖 ∈ [1, 𝑃] is

the same for each input network. Let 𝑙 be the subspace size when

using Algorithm 1 in solving Eq. (11).

Theorem 2. Complexity of SyTE-Fast-A. The time complexity

of Algorithm 2 is𝑂(𝐾𝑚+𝑛+

∑𝑃
𝑖=1

(𝑠𝑖𝐾𝑙𝑚𝑖+𝑠𝑖𝑙
𝐾

). The space complexity

of Algorithm 2 is 𝑂(𝑃𝐾𝑚𝑖 + 𝐾𝑙𝑛𝑖 + 𝑙2𝐾).

Proof. Constructing Ã𝑖𝑖
1
, ..., Ã𝑖𝑖

𝐾
,∀1 ≤ 𝑗 ≤ 𝑃 takes 𝑂(𝐾𝑚). Cal-

culatingB𝑖 ...𝑖 takes𝑂(𝑛) because the tensorB is rank-𝑛. Solving 𝑃

equations of Eq. (11) by using SyTE-Fast-P takes 𝑂(

∑𝑃
𝑖=1

(𝑠𝑖𝐾𝑙𝑚𝑖 +

𝑠𝑖𝑙
𝐾

)). Overall, the time complexity of SyTE-Fast-A is 𝑂(𝐾𝑚 + 𝑛 +∑𝑃
𝑖=1

(𝑠𝑖𝐾𝑙𝑚𝑖 + 𝑠𝑖𝑙
𝐾

)).

For space complexity, storing Ã𝑖𝑖
1
, ..., Ã𝑖𝑖

𝐾
takes𝑂(𝑃𝐾𝑚𝑖). Since in

the iteration only one Eq. (11) is solved each time, storing Hessen-

berg matrices and orthonomal basis takes𝑂(𝐾𝑙𝑛𝑖 +𝑙
2𝐾

). The overall

space complexity for SyTE-Fast-A is 𝑂(𝑃𝐾𝑚𝑖 + 𝐾𝑙𝑛𝑖 + 𝑙2𝐾). □

Remark. From Theorem 2, note that the number of node attributes

has great impact on time and space complexity, since

∑𝑃
𝑖=1

𝑚𝑖 =𝑚.

A larger number of node attribute will lead to smaller complexity

for computing each block tensor variable. Also note that the time

complexity is much less than the basic method, which is 𝑂(𝑁).

6 SENSITIVITY ANALYSIS

In this section, we analyze the sensitivity of the linear system

formulated in Eq. (3). To be specific, we aim to understand how

the solution of Eq. (3) will be impacted if some edges of the input

networks are changed, due to either random noise or adversarial

attacks (e.g., edge removal [35]). Given 𝐾 networks 𝐺1, ...,𝐺𝐾 and

the budget for edge perturbation in each network 𝑝1, ..., 𝑝𝐾 . Let

Ã = I − Ã1 ⊗ · · · ⊗ Ã𝐾 , we have:
(Ã + ∆Ã)(x + ∆x) = b (12)

where ∆Ã and ∆x are the perturbations to Ã and solution x respec-

tively. We present the following theorem:

Theorem 3. The relative change after edge perturbation satisfies:

| |∆x| |
| |x| | ≤

𝜂

1 − 𝜖 (

𝐾∏
𝑖=1

𝑚𝑖 −
𝐾∏
𝑖=1

(𝑚𝑖 − 2𝑝𝑖))
1/2

(13)

where | |Ã× | |𝐹= 𝜖 < 1, 𝜂 = | |D−1/2 | |2
𝐹
.𝑚𝑖 is the number of edges in

network 𝐺𝑖 .

Proof. Based on Eq. (3), we have ∆x ≈ −Ã−1
∆Ãx by dropping

the high-order small term ∆Ã∆x. The relative change after edge
removal is as follows:

| |∆x| |
| |x| | =

| |Ã−1
∆Ãx| |
| |x| | ≤ | |Ã

−1 | | | |∆Ã| | | |x| |
| |x| | = 𝜅(Ã)

| |∆Ã| |
| |Ã| |

(14)

where 𝜅(Ã) = | |Ã| | | |Ã−1 | | is the condition number of matrix Ã.
Note that Ã is invertible since it is nonsingular. Since | |Ã| |∞< 1,

we have Ã−1
=

∑∞
𝑗=0

(Ã×)
𝑗
. Therefore,

| |Ã−1 | |𝐹≤
∞∑
𝑗=0

𝜖 𝑗 =

1

1 − 𝜖 (15)

| |∆Ã| |= | |Ã× − Ã′× | |= | |D−1/2
(A× −A′×)D−1/2 | |, where Ã′× and A′×

are perturbed Ã× and A×, respectively. Thus we have:

| |∆Ã| |≤ | |D−1/2 | |2𝐹 | |Ã× − Ã′× | |= 𝜂(

𝐾∏
𝑖=1

𝑚𝑖 −
𝐾∏
𝑖=1

(𝑚𝑖 − 2𝑝𝑖))
1/2

(16)

where

∏𝐾
𝑖=1

𝑚𝑖 −
∏𝐾
𝑖=1

(𝑚𝑖 − 2𝑝𝑖) is the number of non-zero entries

in ∆Ã. Plugging Eq. (15) (16) into Eq. (14) leads to Eq. (13). □

From Theorem 3, we can see that the relative change of the

solution x is bounded by the norm of the perturbed matrix ∆Ã.
One implication for adversarial attacking (e.g., removing certain

edges to maximally alter the solution x) of this bound is as follows.
Intuitively, a good attacking strategy might be to remove the edges

in each Ã𝑖 with high weights, since this will lead to the largest

relative norm change (i.e., a larger upper bound in Theorem 3).

7 EXPERIMENTS

In this section we present the experimental results to answer the

following questions:

• Q1 Effectiveness. How effective and accurate are the pro-

posed SyTE methods for inferring multi-way association?

• Q2Efficiency.How fast and scalable are the proposed SyTE

methods?

7.1 Experimental Setup

Datasets.We use five datasets for evaluations whose statistics is

summarized in Table 2 and details can be found in the appendix.

Comparison methods. In total, we evaluate 12 methods, includ-

ing the proposed SyTE algorithms. For one-to-one multi-network

alignment, we compare with CLF [30], FINAL [32] and IsoRank

[25]. For multi-network node retrieval, we compare with REGAL

[10], CrossMNA [6], FINAL [32], and IsoRank [25]. For high-order

recommendation, we compare with nNTF (non-negative tensor

factorization), NTF (Neural Tensor Factorization) [27], and wiZAN-

Dual (Dual-Regularized One-Class Collaborative Filtering) [29].

For scalability study, we compare the proposed fast methods SyTE-

Fast-P and SyTE-Fast-Awith two classic Sylvester equation solvers,

including FP (Fixed Point method) and CG (Conjugate Gradient

method) [22].

Table 2: Datasets Summary

Dataset Name Category # of Nodes # of Edges

DBLP Co-authorship 1,013 3,244

Arxiv Academic network 2,908 3,551

Douban User relationship 3,384 6,556

Aminer Academic network 1,274,360 4,756,194

Dataset Name # of Users # of Artists # of Tags

LastFm 15,154 2,982 4,144

Evaluation Tasks. We design the following tasks for evaluations.

Task 1. Multi-network alignment.We first conduct multi-network

alignment on three networks, which is different from traditional

pair-wise network alignment. We use the following datasets. Three

networks from Arxiv (two physical domains and one mathematical

domain), three networks from DBLP (the original DBLP network

and two permutated DBLP networks with 5% randomly added

edge noises), and three networks from Douban (two Douban online

networks with following and messaging relation respectively and

one offline network).

Task 2. Multi-network node retrieval. In order to compare with some

multi-network alignment baseline methods which do not support

one-to-one alignment, we design a multi-network node retrieval

experiment which is often referred to as ‘soft alignment’ [6, 10].

Given three networks and a node from one network, the goal of

multi-network node retrieval is to return a ranking tuple list such

that the similar nodes from other networks would appear in high

ranks of the tuple list.

Task 3. High-order recommendation. To further evaluate the effec-

tiveness of multi-way association, we conduct high-order recom-

mendation. Traditional recommendation only recommend items to

users, but we conduct high-order recommendation task to recom-

mend tuples with (artist, tag) to users simultaneously on LastFm.

The original dataset contains user-user interaction network, the

(user, artist, tag) tuples reflecting the user’s listening behavior, the

(artist, tag) tuples reflecting the categories of artists, and (user,

artist) tuple reflecting the users’ artist preference. The artist-artist

network is constructed by the the artists’ cosine similarities calcu-

lated from (user, artist) tuples. The tag-tag network is constructed

by calculating the cosine similarities of tags pairs in the (artist, tag)

tuples. Note that the attributes are not used in this task.

The source code is available in this link
5
. The details of datasets,

data preprocessing, and baseline methods are in the appendix.

7.2 Effectiveness Results

First, we present the experimental results of the multi-network

alignment task. We focus on one-to-one alignment in this experi-

ment. In order to obtain the one-to-one mapping, we implement

a high-order greedy match algorithm to convert the multi-way

association solution tensor X to a matching tensorM, in which

5
https://drive.google.com/drive/folders/1Bu72H7_0TpPFNrefkc6E8BWXoa4wc7f7?

usp=sharing

https://drive.google.com/drive/folders/1Bu72H7_0TpPFNrefkc6E8BWXoa4wc7f7?usp=sharing
https://drive.google.com/drive/folders/1Bu72H7_0TpPFNrefkc6E8BWXoa4wc7f7?usp=sharing

(a) Hits@k vs. k with high-

order metric. Ratio of known

anchor links: 0.3.

(b) Hits@k vs. k with pair-

wise metric. Ratio of known

anchor links: 0.3.

(c) Hits@30 vs. ratio of

known anchor links. High-

order metric.

(d) Hits@30 vs. ratio of

known anchor links. Pair-

wise metric.

Figure 2: Cross-network node retrieval results on DBLP dataset. Higher is better. Best viewed in color.
6

each fiber (e.g. M(𝑖𝐾 , 𝑖𝐾−1, ..., 𝑖2, :)) contains at most one non-zero

entry to indicate a one-to-one alignment.

We use two metrics to evaluate the effectiveness. First, for a

given one-to-one alignment tuple of nodes (e.g. (𝑢1, ..., 𝑢𝐾), 𝑢1 ∈
𝐺1, ..., 𝑢𝐾 ∈ 𝐺𝑘), we consider it as a successful alignment iff all

nodes in the tuple are correct (referred to as the high-order met-

ric). For the second metric, for a given one-to-one alignment tuple

of nodes, we consider it successful iff any pair of nodes (e.g. 𝑢1

and 𝑢2) in the tuple are aligned correctly (referred to as pair-wise

metric). For both metrics, the alignment accuracy is calculated as

of correctly aligned node tuples

of node tuples in test data
, where the test data does not

contain any known multi-way anchor links. The results on Arxiv

without attribute are shown in Fig. 3. We observe that by the high-

order metric, both basic algorithm and SyTE-Fast-P algorithm

outperform baselines by up to 16.2%. By the pair-wise metric, our

proposed methods cannot outperform, but are comparable with

baselines. This is consistent with the goal of the proposed SyTE

methods which are designed to primarily capture multi-way (i.e.,

high-order) associations. On the other hand, the baseline meth-

ods, being pair-wise approaches, are better suited for pair-wise

association inference.

(a) high-order metric. (b) pair-wise metric.

Figure 3: Multi-network alignment results on Arxiv dataset

(without node attributes). Best viewed in color.

The results of multi-network alignment of attributed networks

on DBLP dataset are presented in Fig. 4. In most cases, both basic al-

gorithm and SyTE-Fast-A outperform baseline methods. Although

there are some performance loss of SyTE-Fast-A compared to the

basic algorithm, the alignment accuracy of SyTE-Fast-A is still

higher than baseline pair-wise network alignment methods.

Second, we present the experimental results of the high-order

recommendation task. We focus on one-class recommendation

(a) high-order metric (b) pair-wise metric

Figure 4: Multi-network alignment results on DBLP (with

attributes). Best viewed in color.

in this task [29]. On one hand, for each user in the test data, if

the returned top-𝑘 tuple list of (artist, tag) contains the ground-

truth, we consider it as a successful hit. Similar to multi-network

alignment, this is referred to as high-order metric. On the other

hand, if either artist or tag is correctly recommended to a given user,

we consider it as a successful recommendation. This is referred to

as pair-wise metric. We use hits@30 for both metrics. The results

are shown in Fig. 5. We can observe that the proposed algorithm

SyTE-Fast-P outperforms baselines in terms of both high-order and

pair-wise metrics.

(a) high-order metric. (b) pair-wise metric.

Figure 5: High-order recommendation results on LastFm

dataset. Best viewed in color.

Next, we present the experimental results of the multi-network

node retrieval task. For each query node of a given network, the

task retrieves nodes from the other two networks for a top-𝑘 list.

We study the hits@𝑘 vs. 𝑘 for a fixed ratio of known anchor multi-

way associations, and then fix 𝑘 = 30 to study the hits@30 vs.

6
Note that the curves of REGAL in both (c) and (d) are flat because REGAL is an

unsupervised method.

the ratio of known multi-way anchor links. DBLP dataset is used

for this task, and the results are shown in Fig. 2. In Fig. 2 (a) and

(c), we can see that SyTE-Fast-P outperforms baselines by a large

margin (e.g., by 50%+ when 𝑘 = 100). In Fig. 2(b) and (d), the

proposed SyTE-Fast-P algorithm does not outperform some pair-

wise network alignment methods (e.g., CrossMNA, FINAL). This is

also expected since the pair-wise metric is used for the retrieval

task, whereas the proposed SyTE algorithms are primarily designed

for the high-order metric (i.e., multi-way association).

7.3 Scalability Results

In the heart of our proposed algorithm is a Sylvester equation

solver. Here, so we compare the proposed methods with two classic

Sylvester equation/linear system solvers, i.e., Fixed Point method

(FP) and Conjugate Gradient method (CG)
7
. We extract subgraphs

from the largest dataset Aminer, and the results are presented

in Fig. 6. We terminate the program if it can not finish in 3, 000

seconds. Note that the vertical axes are in log scale. From Fig. 6 (a),

for plain networks, our proposed method SyTE-Fast-P exhibits a

linear scalability w.r.t. the number of nodes of the input networks,

whereas neither of the two baseline methods (FP and CG) can finish

within 3, 000 seconds with more than 1, 200 nodes. SyTE-Fast-P* is

a variant of SyTE-Fast-P, and it is detailed in the appendix. SyTE-

Fast-A* is a variant of SyTE-Fast-A, which uses SyTE-Fast-P* in

line 4 of Alg. 2. From Fig. 6 (b), the proposed SyTE-Fast-A scales

linearly whereas all other methods scales super-linearly. Note that

the blue curve (marked as SyTE-BCD) denotes a variant of SyTE-

Fast-A by using the exact block coordinate descent method. As we

can see, it can not scale up to large networks.

Additional scalability results w.r.t. the number of input networks

are provided in the appendix.

7.4 Parameter Sensitivity

Here, we study the parameter sensitivity of the proposed algorithm

SyTE-Fast-P. We use the multi-network alignment task to study the

alignment accuracy w.r.t. two key parameters (i.e., 𝛼 and Krylov

subspace dimension 𝑙 for SyTE-Fast-P). We use three subgraphs

extracted from Douban dataset. The results are shown in Fig. 7.

From Fig. 7, we can see that the performance of Algorithm 1 is

stable in a relatively large range of parameter space.

(a) without node attributes. (b) with node attributes.

Figure 6: Scalability results and running time comparison

on Aminer dataset. Notice the log scale in the vertical axis.

7
Baseline methods FINAL and IsoRank also uses FP method. The supervised learning

methods (e.g. CrossMNA) are difficult to be compared with our numerical method

since they require off-line training.

(a) pair-wise metric. (b) high-order metric.

Figure 7: Parameter sensitivity analysis of the proposed Al-

gorithm 1. Best viewed in color.

8 RELATEDWORK

A - Multi-network Mining. Multi-network mining, especially

those for addressing more than two input networks, has received

increasing attention in recent years. For example, Liu et al. pro-

pose a multi-relation association learning method (CGRL) for joint

inference over multiple networks which specifies the internal con-

nections in each type of objects [17]. Chen et al. propose to solve the

multi-label learning in multi-networks via a Sylvester equation [3].

Proposed by Zhang et al. M-NASA [31] is one of the earliest works

on multi-network alignment. Chu et al. propose an embedding

algorithm (CrossMNA) [6] which leverages inter- and intra-vectors

for multi-network alignment. Other embedding based methods for

pair-wise network alignment/link prediction include IONE [18] by

Liu et al., REGAL by Heimann et al. [10], CENALP [9] by Du et al.

etc. Multi-network embedding technique also draws significant

attention recently. Representative works include [8, 20].

B - Sylvester (Tensor) Equation. Another line of recent work

focuses on applying the Sylvester equation/tensor techniques for

network mining, which has been shown its effectiveness in a va-

riety of multi-network mining tasks. For example, Du et al. [7]

develop a fast Sylvester equation solver for several pair-wise net-

work mining tasks. Zhou et al. [35] propose an adversarial attack

method on multi-network mining tasks which is also based on the

Sylvester equation. Meanwhile, many algorithms have been devel-

oped in the scientific computing community for solving Sylvester

equations [4, 14, 24] and Sylvester tensor equations [5]. Recent

representative tensor-based approaches for (graph) data mining

include [36, 37] for positive-unlabeled recommendation and multi-

task crowdsourcing, and [34] for graph clustering.

C - Graph Matching. In the computer vision (CV) domain, graph

matching, with the objective of matching anchor points between

images, has been extensively studied. Recently there are works on

multi-graph matching, such as [23, 26, 28]. Among them, Tensor-

MGM by Shi et al. [23] proposes a tensor power iteration method

for high-order optimization on multi-graph matching, which is

remotely related to our work. Although [23] can also take multiple

networks as inputs, there are two key differences. First, [23] relies

on node/edge features to compute a cross-network node/edge sim-

ilarity matrix. This is a reasonable design in the CV domain, since

such features can be readily extracted from raw images. How-

ever, in our method, such a cross-network node similarity ma-

trix/tensor is not mandatory. Second, the objective of methods in

[23] focuses on the conformance of the matching result with the

known cross-network similarity matrix, which is different from

topological/attribute consistency principles in our objective. It is

worthmentioning that the formulation of [23] degenerates tomulti-

dimensional assignment with only categorical node attributes.

9 CONCLUSION

In this paper, we formulate the multi-way association problem as

a convex optimization problem, and show that it can be solved

optimally by a Sylvester tensor equation. We propose two fast

algorithms to solve this Sylvester tensor equation, with a linear

complexity w.r.t. the size of input networks. On top of that, we pro-

vide theoretical analysis on the sensitivity of the Sylvester tensor

equation solution. Extensive empirical evaluations demonstrate

(1) the effectiveness on a variety of multi-network mining tasks

(e.g., multi-network alignment, multi-network node retrieval and

high-order recommendation), and (2) the linear scalability of the

proposed methods.

10 ACKNOWLEDGEMENT

This work is supported by National Science Foundation under

grant No. 1947135, and 2003924 by the NSF Program on Fairness in

AI in collaboration with Amazon under award No. 1939725, by the

United States Air Force and DARPA under contract number FA8750-

17-C-0153
8
, and IBM-ILLINOIS Center for Cognitive Computing

Systems Research (C3SR) - a research collaboration as part of the

IBM AI Horizons Network. The content of the information in this

document does not necessarily reflect the position or the policy of

the Government or Amazon, and no official endorsement should

be inferred. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any

copyright notation here on.

REFERENCES

[1] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd Workshop on

Information Heterogeneity and Fusion in Recommender Systems (HetRec 2011).

In Proceedings of the 5th ACM conference on Recommender systems (RecSys 2011).

ACM, New York, NY, USA.

[2] Chen Chen, Hanghang Tong, Lei Xie, Lei Ying, and Qing He. 2016. FASCINATE:

Fast Cross-Layer Dependency Inference on Multi-layered Networks. In Proceed-

ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, San Francisco, CA, USA, August 13-17, 2016. 765–774.

[3] Gang Chen, Yangqiu Song, Fei Wang, and Changshui Zhang. 2008. Semi-

supervised multi-label learning by solving a sylvester equation. In Proceedings

of the 2008 SIAM International Conference on Data Mining. SIAM, 410–419.

[4] Minhong Chen and Daniel Kressner. 2019. Recursive blocked algorithms for

linear systems with Kronecker product structure. arXiv preprint arXiv:1905.09539

(2019).

[5] Zhen Chen and LinZhang Lu. 2012. A projection method and Kronecker product

preconditioner for solving Sylvester tensor equations. Science ChinaMathematics

55, 6 (2012), 1281–1292.

[6] Xiaokai Chu, Xinxin Fan, Di Yao, Zhihua Zhu, Jianhui Huang, and Jingping Bi.

2019. Cross-Network Embedding for Multi-Network Alignment. In The World

Wide Web Conference. ACM, 273–284.

[7] Boxin Du and Hanghang Tong. 2018. FASTEN: Fast Sylvester Equation Solver for

Graph Mining. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining. ACM, 1339–1347.

[8] Boxin Du and Hanghang Tong. 2019. MrMine: Multi-resolution Multi-network

Embedding. In Proceedings of the 28th ACM International Conference on Informa-

tion and Knowledge Management. ACM, 479–488.

[9] Xingbo Du, Junchi Yan, Rui Zhang, and Hongyuan Zha. 2020. Cross-network

skip-gram embedding for joint network alignment and link prediction. IEEE

Transactions on Knowledge and Data Engineering (2020).

[10] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. Regal:

Representation learning-based graph alignment. In Proceedings of the 27th ACM

International Conference on Information and Knowledge Management. 117–126.

[11] Meng Jiang, Peng Cui, Fei Wang, Qiang Yang, Wenwu Zhu, and Shiqiang Yang.

2012. Social recommendation across multiple relational domains. In Proceed-

ings of the 21st ACM international conference on Information and knowledge

management. 1422–1431.

[12] Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applica-

tions. SIAM review 51, 3 (2009), 455–500.

8
Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

[13] Danai Koutra, Hanghang Tong, and David Lubensky. 2013. Big-align: Fast

bipartite graph alignment. In 2013 IEEE 13th International Conference on Data

Mining. IEEE, 389–398.

[14] Daniel Kressner and Christine Tobler. 2010. Krylov subspace methods for linear

systems with tensor product structure. SIAM journal on matrix analysis and

applications 31, 4 (2010), 1688–1714.

[15] Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, and Norbou

Buchler. 2015. Replacing the irreplaceable: Fast algorithms for team member

recommendation. In Proceedings of the 24th International Conference on World

Wide Web. 636–646.

[16] Zhi Liang, Meng Xu, Maikun Teng, and Liwen Niu. 2006. NetAlign: a web-based

tool for comparison of protein interaction networks. Bioinformatics 22, 17 (2006),

2175–2177.

[17] Hanxiao Liu and Yiming Yang. 2016. Cross-graph learning of multi-relational

associations. arXiv preprint arXiv:1605.01832 (2016).

[18] Li Liu, William K Cheung, Xin Li, and Lejian Liao. 2016. Aligning Users across

Social Networks Using Network Embedding.. In Ijcai. 1774–1780.

[19] Federico Monti, Michael Bronstein, and Xavier Bresson. 2017. Geometric matrix

completion with recurrent multi-graph neural networks. In Advances in Neural

Information Processing Systems. 3697–3707.

[20] Jingchao Ni, Shiyu Chang, Xiao Liu, Wei Cheng, Haifeng Chen, Dongkuan Xu,

and Xiang Zhang. 2018. Co-regularized deep multi-network embedding. In

Proceedings of the 2018 World Wide Web Conference. 469–478.

[21] Adriana Prado, Marc Plantevit, Céline Robardet, and Jean-Francois Boulicaut.

2012. Mining graph topological patterns: Finding covariations among vertex

descriptors. IEEE Transactions on Knowledge and Data Engineering 25, 9 (2012),

2090–2104.

[22] Yousef Saad. 2003. Iterative methods for sparse linear systems. Vol. 82. siam.

[23] Xinchu Shi, Haibin Ling, Weiming Hu, Junliang Xing, and Yanning Zhang. 2016.

Tensor power iteration for multi-graph matching. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 5062–5070.

[24] Valeria Simoncini and Vladimir Druskin. 2009. Convergence analysis of projec-

tion methods for the numerical solution of large Lyapunov equations. SIAM J.

Numer. Anal. 47, 2 (2009), 828–843.

[25] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global alignment of multiple

protein interaction networks with application to functional orthology detection.

Proceedings of the National Academy of Sciences 105, 35 (2008), 12763–12768.

[26] Runzhong Wang, Junchi Yan, and Xiaokang Yang. 2020. Graduated Assignment

for JointMulti-GraphMatching andClusteringwithApplication to Unsupervised

Graph Matching Network Learning. Advances in Neural Information Processing

Systems 33 (2020).

[27] Xian Wu, Baoxu Shi, Yuxiao Dong, Chao Huang, and Nitesh Chawla. 2018.

Neural tensor factorization. arXiv preprint arXiv:1802.04416 (2018).

[28] Junchi Yan, Minsu Cho, Hongyuan Zha, Xiaokang Yang, and Stephen M Chu.

2015. Multi-graph matching via affinity optimization with graduated consistency

regularization. IEEE transactions on pattern analysis and machine intelligence 38,

6 (2015), 1228–1242.

[29] Yuan Yao, Hanghang Tong, Guo Yan, Feng Xu, Xiang Zhang, Boleslaw K. Szy-

manski, and Jian Lu. 2014. Dual-Regularized One-Class Collaborative Filtering.

In CIKM 2014, Shanghai, China, November 3-7, 2014. 759–768.

[30] Jiawei Zhang and Philip S. Yu. 2015. Integrated anchor and social link predic-

tions across social networks. In Twenty-Fourth International Joint Conference on

Artificial Intelligence.

[31] Jiawei Zhang and Philip S. Yu. 2015. Multiple anonymized social networks

alignment. In 2015 IEEE International Conference on Data Mining. IEEE, 599–608.

[32] Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM, 1345–1354.

[33] Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip S Yu. 2015. Cosnet:

Connecting heterogeneous social networks with local and global consistency.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 1485–1494.

[34] Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong,

Hasan Davulcu, and Jingrui He. 2017. A local algorithm for structure-preserving

graph cut. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. 655–664.

[35] Qinghai Zhou, Liangyue Li, Nan Cao, Lei Ying, and Hanghang Tong. 2019.

Admiring: Adversarial Multi-Network Mining. In ICDM.

[36] Yao Zhou, Jianpeng Xu, Jun Wu, Zeinab Taghavi, Evren Korpeoglu, Achan

Kannan, and Jingrui He. 2021. PURE: Positive-Unlabeled Recommendation

with Generative Adversarial Network. In Proceedings of the 27th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. ACM.

[37] Yao Zhou, Lei Ying, and Jingrui He. 2019. Multi-task Crowdsourcing via an

Optimization Framework. ACM Trans. Knowl. Discov. Data 13, 3 (2019), 27:1–

27:26. https://doi.org/10.1145/3310227

[38] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised

learning using gaussian fields and harmonic functions. In Proceedings of the 20th

International conference on Machine learning (ICML-03). 912–919.

https://doi.org/10.1145/3310227

APPENDIX

We summarize the appendix as follows:

• Additional Algorithms: Basic Algorithm, and SyTE-Fast-

P* for plain networks;

• Proofs and Analysis: Proofs for the theorems of optimal-

ity, complexity, and some mathematical derivations of the

algorithms proposed in the paper;

• Experimental Details: The additional details of implemen-

tation, datasets, pre-processing, and baseline methods;

• Experimental Results: The additional parameter sensitiv-

ity and scalability results.

A – the Basic Algorithm

The Basic Algorithm (in Section 3) is summarized in Algorithm 3.

Algorithm 3 Basic Algorithm

Input: 𝐾 Adjacency matrices of input networks A1, ..., A𝐾 , anchor
link vector b = vec(B), node or edge attribute matrix N, E if

available, maximum iteration number 𝑡𝑚𝑎𝑥 ;

Output: The solution vector x of Eq. (3).

1: Initialize A𝑓 , A𝑠 by 𝑘 ∈ [1, 𝐾 − 1], x, and 𝑡 = 1;

2: Compute E𝑞
𝑓

=

⊗𝑘
𝑖=1

E𝑞
𝑖
, E𝑞𝑠 =

⊗𝐾
𝑖=𝑘+1

E𝑞
𝑖
,∀𝑞 ∈ [1, 𝑄];

3: while 𝑡 < 𝑡𝑚𝑎𝑥 do

4: Compute V = reshape(ND−1/2x, 𝑛𝐾−𝑘 , 𝑛𝑘);

5: x← 𝛼D−1/2Nvec(

∑𝑄
𝑞=1

(E𝑞𝑠 ⊙ A𝑠)V(E𝑞
𝑓
⊙ A𝑓)

T
) + (1 − 𝛼)b;

6: Set 𝑡 ← 𝑡 + 1;

7: end while

8: Return x

Corollary 1. Convergence and Optimality of the Basic Al-

gorithm. The Algorithm 3 converges to the closed form solution

(1 − 𝛼)(I − 𝛼W̃)
−1b, which is the global minimum of Eq. (3).

Proof. See Theorem 1 in [32]. Omitted for brevity. □

B – SyTE-Fast-P* Algorithm

Here, we present another fast algorithm for solving the Sylvester

tensor equation of plain network (Eq. (5)). First, since each Ã𝑖 in
Eq. (6) is diagonalizable (i.e., real symmetric matrix), we take the

eigen-decomposition of each Ã𝑖 = Q𝑖Λ𝑖QT
𝑖
, in which Q𝑖 is a matrix

with each column as an eigenvector. In this case, it can be easily

proved that the Eq. (6) can be written as:

(I − Λ1 ⊗ · · · ⊗ Λ𝐾)y = c (17)

where c = QTb and x = Qy, and Q = Q1 ⊗ · · · ⊗ Q𝐾 . Note that Eq.
(17) is very easy to solve because the coefficient matrix is diagonal.

If we use full eigen-decomposition for each Ã𝑖 , there would be no

approximation error. However, the time complexity of calculating x
from intermediate variable y would be 𝑂(𝑁 2

). Since the adjacency

matrices are usually sparse and low-rank, we could use rank-𝑟

(𝑟 << 𝑛) approximation on the eigen-decomposition of each Ã𝑖 .
Then the linear system in Eq. (17) becomes much smaller (𝑟𝐾 × 𝑟𝐾
instead of 𝑛𝐾 × 𝑛𝐾). For notation simplicity, we use the same 𝑟 for

each Ã𝑖 . The time complexity of calculating y is 𝑂(𝑟𝐾). Adding

the time complexity of eigen-decomposition and calculating c, the
overall time complexity is reduced to 𝑂(𝐾𝑟𝑛2

+ 𝑟𝐾 + 𝑟𝐾𝑛𝐾). The

proposed SyTE-Fast-P* algorithm is summarized in Algorithm 4.

For simplicity, we assume the ranks of eigen-decomposition

are the same for each Ã𝑖 in line 2. The intermediate solution y
is solved in line 4, and the implicit representation of solution is

returned and stored in line 5, which will significantly reduce the

space complexity. x is calculated as x =

⊗𝐾
𝑗=1

Q𝑗y.
With the proposal of Alg. 4 on plain networks, the SyTE-Fast-A,

which uses SyTE-Fast-P in line 4 of Alg. 2, has another variant

that instead uses SyTE-Fast-P*. We name it SyTE-Fast-A*, and its

scalability is shown in Section 7.

Algorithm 4 SyTE-Fast-P* Algorithm

Input: 𝐾 Normalized adjacency matrices of input networks Ã1, ...,

Ã𝐾 , multi-way anchor link tensor B, approximation rank 𝑟 ;

Output: The solution tensor X of Eq. (6).

1: for 𝑖 = 1, ..., 𝐾 do;

2: Conduct top-𝑟 eigen-decomposition on Ã𝑖 for Q𝑖 , Λ𝑖 ;
3: end for

4: Calculate c =

⊗𝐾
𝑗=1

QT
𝑗
b, and solve Eq. (17) to obtain y;

5: Return implicit solution {y,Q𝑗 }𝐾𝑗=1
.

C – Proofs and Analysis

We prove that the subsystems decomposed in Eq. (7) can be solved

by a much smaller linear system (Eq. (9)) as follows.

Theorem 4. Subsystem (I − Ã1 ⊗ · · · ⊗ Ã𝐾)x𝑖 =

⊗𝐾
𝑗=1

b(𝑖)

𝑗
can

be solved by first solving a small-scaled linear system (

⊗𝐾
𝑖=1

I𝑙𝑖+1,𝑙𝑖 −⊗𝐾
𝑖=1

H̃𝑖)y =

⊗𝐾
𝑖=1

UT
𝑙𝑖+1

r0.

Proof. For subsystem (I − Ã1 ⊗ · · · ⊗ Ã𝐾)x𝑖 =

⊗𝐾
𝑗=1

b(𝑖)

𝑗
, the

initial residual vector r0 = b− (I− Ã1 ⊗ · · · ⊗ Ã𝐾)x0, given an initial

solution vector x0 (which is typically initialized as zero vector).

Let the updated solution vector be x1 = x0 + z0, in which we let

z0 ∈ K⊗𝔏 . So z0 =

⊗𝐾
𝑖=1

U𝑙𝑖y. The updated residual to be minimized

is as follows.

r1 = r0−(I−
𝐾⊗
𝑖=1

A𝑖)(
𝐾⊗
𝑖=1

U𝑙𝑖)y = r0−(

𝐾⊗
𝑖=1

U𝑙𝑖)y+(

𝐾⊗
𝑖=1

U𝑙𝑖+1
)(

𝐾⊗
𝑖=1

H̃𝑖)y

Recall that the second equation above is due to the Arnoldi process,

which gives H̃𝑖 = UT
𝑙𝑖+1

A𝑖U𝑙𝑖 . Minimizing the norm of the updated

residual gives us:

min

y
| |r1 | |22 = min

y
| |
𝐾⊗
𝑖=1

U𝑙𝑖+1
(

𝐾⊗
𝑖=1

UT
𝑙𝑖+1

r0 −
𝐾⊗
𝑖=1

I𝑙𝑖+1,𝑙𝑖y +

𝐾⊗
𝑖=1

H̃𝑖y)| |2
2

= min

y
| |
𝐾⊗
𝑖=1

UT
𝑙𝑖+1

r0 −
𝐾⊗
𝑖=1

I𝑙𝑖+1,𝑙𝑖y +

𝐾⊗
𝑖=1

H̃𝑖y| |22 (18)

where the second step is because

⊗𝐾
𝑖=1

U𝑙𝑖+1
is a matrix with all

columns being orthogonal with each other. In the above equation

I𝑙𝑖+1,𝑙𝑖 = [𝛿𝑖, 𝑗]1≤𝑖≤𝑙𝑖+1,1≤ 𝑗≤𝑙𝑖 , in which 𝛿𝑖, 𝑗 is the Kronecker 𝛿-

function, which is an identity like matrix with 1 in "diagonal"

entries. Solving the minimization problem in Eq. (18) is actually

equal to solving a smaller scaled linear system, compared to the

original large linear system:

(

𝐾⊗
𝑖=1

I𝑙𝑖+1,𝑙𝑖 −
𝐾⊗
𝑖=1

H̃𝑖)y =

𝐾⊗
𝑖=1

UT
𝑙𝑖+1

r0 (19)

Note that x = x1 + · · · + x𝐾 , where each x𝑖 = ⊗𝐾
𝑗=1

U(𝑖)

𝑙 𝑗
y𝑖 , and the

solution tensor X = reshape(x, 𝑛𝐾 , ..., 𝑛1), which does not need to

be explicitly calculated in our algorithm. □

We then give the following theorem for the complexity of the

proposed SyTE-Fast-P* algorithm. In the analysis of complexity,

for notation simplicity, we assume all input networks share the

same number of nodes 𝑛 and number of edges𝑚.

Theorem 5. Complexity of SyTE-Fast-P*. The time complexity

of Algorithm 4 is 𝑂(𝐾𝑟𝑛2
+ 𝑟𝐾 + 𝑟𝐾𝑛𝐾). The space complexity of

Algorithm 4 is 𝑂(𝐾𝑚 + 𝐾𝑛𝑟).

Proof. SyTE-Fast-P*:𝐾 top-𝑟 eigen-decomposition takes𝑂(𝐾𝑟𝑛2
).

Solving Eq. (17) takes linear time complexity w.r.t. the linear sys-

tem size, 𝑂(𝑟𝐾). Calculating c takes 𝑂(𝑟𝐾𝑛𝐾). Overall, the time

complexity for SyTE-Fast-P* is 𝑂(𝐾𝑟𝑛2
+ 𝑟𝐾 + 𝑟𝑘𝑛𝐾).

For space complexity, storing𝐾 adjacencymatrices takes𝑂(𝐾𝑚),

and storing 𝐾 Q matrices of eigenvectors takes 𝑂(𝐾𝑛𝑟). Overall,

the space complexity for SyTE-Fast-P* is 𝑂(𝐾𝑚 + 𝐾𝑛𝑟). □

Since 𝐾, 𝑟 are usually much smaller than𝑚,𝑛 (𝐾, 𝑟 are treated as

constants in the big-O notation), both Alg. 1 and Alg. 4 have a much

smaller time complexity than the Basic Algorithm (Algorithm 3)

whose time complexity is 𝑂(𝑄𝑚 ⌊𝐾/2⌋𝑛 ⌊𝐾/2⌋ · 𝑡𝑚𝑎𝑥 + 𝑛𝐾).

Convexity of objective function. We prove the convexity of

the objective function.

Lemma 1. The objective function in Eq. (2) is convex.

Proof. Since the gradient of Eq. (2) is ▽𝐽 (x) = 2𝛼(I−W̃)x+2(1−
𝛼)(x − b) = 2(I−𝛼W̃)x + 2(1−𝛼)b. The Hessian matrix of objective

function in Eq. (2) is H(𝐽 (x)) = 2(I − 𝛼W̃). As we have discussed in

section 4, this matrix is strictly diagonal dominant when 𝛼 ∈ (0, 1)

and also positive definite. Eq. (2) is hence convex. □

D – Experimental Details

Hardware and software. All of the datasets are public. All ex-

periments are performed on a machine with Intel(R) Core(TM)

i7-9800X CPU with 3.80 GHz and 64.0 GB RAM. The algorithms

are programmed with MATLAB R2019a with parallel computing.

Baseline methods. For pairwise network alignment methods in

multi-network alignment task (FINAL, IsoRank, CLF), the align-

ment is first conducted on each pair of networks independently,

and then the node alignments of each pair of networks are merged

together to compare the multi-network alignment performance.

The same strategy is used for pairwise methods in multi-network

node retrieval task. For high-order recommendation task, wiZAN-

Dual is conducted on user-user relation network with user-artist

network, and user-user network with user-tag network, respec-

tively. The recommendation result for each user is then merged

together for high-order recommendation.

Other implementation details. For multi-network alignment,

we implement a high-order greedy match algorithm. The multi-

way association tensor can be transform to a high-order 0-1 tensor,

in which each fiber contains at most one non-zero entry. For multi-

network node retrieval task, given one node 𝑖𝐾 from network 𝐺𝐾 ,

the ranking list of the nodes from the rest of networks is calculated

by sorting the slice of X(𝑖𝐾 , :, ... :).

Datasets. We use five datasets for evaluations as follows:

DBLP is a co-authorship network. Nodes represents authors

while links represents co-authorship relation. The original dataset

contains 42,252 nodes and 210,320 edges [21].

LastFm is a dataset for recommendation. It contains user-user

friendship relation, user-artist listening relation, artist-tag catego-

rization relation and artist profile. The original dataset contains

1,982 users, 17,632 artists and 11,946 tags [1].

Douban includes the users’ friend relation in the online social

network and offline activities, which share overlapping users. It

contains 50k users and 5M edges in the original data. [33].

Arxiv
9
is a co-authorship network from two physical and one

mathematical domains. Nodes represents authors and links repre-

sents co-authorship relation.

Aminer is an academic social network. Undirected edges rep-

resent co-authorship relationship. The whole dataset contains

1,274,360 nodes and 4,756,194 edges [33].

E – Additional Experimental Results

(a) By pair-wise metric. (b) By high-order metric.

Figure 8: Parameter sensitivity of SyTE-Fast-P* on Arxiv.

The parameter sensitivity study of SyTE-Fast-P* is presented in

Fig. 8. The performance of SyTE-Fast-P* increases with the rank of

eigen-decomposition, and 𝛼 has small impact on the performance

since we use uniform multi-way anchor link tensor here. As we

can see, compared with Fig. 7, SyTE-Fast-P is relatively more stable

w.r.t. the parameters 𝛼 and subspace size, while the rank of eigen-

decomposition has higher impact on the performance of SyTE-

Fast-P*. The scalability results on the number of networks are

shown in Fig. 9. The number of nodes used for each network is

100, and when the running time is larger than 3,000s, the program

is terminated. The vertical axis is in log scale. As we can see, the

proposed methods show exponential scalability w.r.t. the number

of networks (relatively much smaller than the number of nodes)

as we analyze in Section 4 and 5.

(a) On plain networks. (b) On attributed networks.

Figure 9: Scalability results of running time vs. the number

of networks on DBLP dataset.

9
https://comunelab.fbk.eu/data.php

	Abstract
	1 Introduction
	2 PROBLEM DEFINITION
	3 Formulation and Basic Algorithm
	3.1 SyTE Formulation
	3.2 Basic Algorithm
	3.3 Sylvester Tensor Equation

	4 SyTE-Fast-P for Plain Networks
	4.1 Intuitions and Key Ideas
	4.2 SyTE-Fast-P Algorithm
	4.3 Proofs and Analysis

	5 SyTE-Fast-A for Attributed Networks
	5.1 Intuitions and Key Ideas
	5.2 SyTE-Fast-A Algorithm
	5.3 Proofs and Analysis

	6 Sensitivity Analysis
	7 Experiments
	7.1 Experimental Setup
	7.2 Effectiveness Results
	7.3 Scalability Results
	7.4 Parameter Sensitivity

	8 Related work
	9 Conclusion
	10 Acknowledgement
	References
	Appendix
	A – the Basic Algorithm
	B – SyTE-Fast-P* Algorithm
	C – Proofs and Analysis
	D – Experimental Details
	E – Additional Experimental Results

