

NetFair: Towards Fair Network Mining

Hanghang Tong

University of Illinois at Urbana-Champaign

htong@illinois.edu, http://tonghanghang.org

Observation: Networks & Graphs Are Everywhere!

Collaboration Networks

Brain Networks

US Power Grid

Biological Networks

Traffic Network

Hospital Networks

This Talk: Networks = Graphs

Research Theme: Understand and Utilize Networks

Where are we?

Network Mining: The Who & What Questions

- Who are in the same online community?
- Who is the key to bridge two academic areas?
- Who is the master criminal mind?
- Who started a misinformation campaign?
- Which items shall we recommend to a user?
- Which gene is most relevant to a given disease?
- Which webpage is most important?
- Which tweet is likely to go viral?
- Which transaction looks suspicious?

Where are we?

Network Mining: The Why & How Questions

• How to ensure the mining is fair?

- Why do two seemingly different users are in the same community?
- Why is a particular tweet more likely to go viral than another?
- Why does the algorithm `think' a transaction looks suspicious?
- How does an influential researcher bridge two areas?
- How do fake review skew the recommendation results?
- How do the mining results relate to the input graph topology?

Roadmap

Motivations

InFoRM: Individual Fairness on Graph Mining

- -InFoRM Introduction
- -InFoRM Measures
- -InFoRM Algorithms
- -InFoRM Cost
- Some Other Work
- Future Directions

Algorithmic Fairness in Machine Learning

- Goal: minimize unintentional discrimination caused by machine learning algorithms
- Existing Measures
 - Group fairness
 - Disparate impact [1]
 - Statistical parity [2]
 - Equal odds [3]
 - Counterfactual fairness [4]
 - Individual fairness [5]

 $d_1\big(M(x),M(y)\big) \leq d_2(x,y)$

- Limitation: IID assumption in traditional machine learning
 - Might be violated by the non-IID nature of graph data

Algorithmic Fairness in Graph Mining

- **Fair Spectral Clustering** [1]
 - Fairness notion: disparate impact
- Fair Graph Embedding
 - Fairwalk [2], compositional fairness constraints [3]
 - Fairness notion: statistical parity
 - MONET [4]
 - Fairness notion: orthogonality of metadata and graph embedding

Fair Recommendation

- Information neural recommendation [5]
 - Fairness notion: statistical parity
- Fairness for collaborative filtering [6]
 - **Fairness notion:** four metrics that measure the differences in estimation error between ground-truth and predictions across protected and unprotected groups

Observation: all of them focus on group-based fairness!

- [1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J.. Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
- [2] Rahman, T. A., Surma, B., Backes, M., & Zhang, Y.. Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
- [3] Bose, A. J., & Hamilton, W. L.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
- [4] Palowitch, J., & Perozzi, B.. Monet: Debiasing Graph Embeddings via the Metadata-Orthogonal Training Unit. arXiv.
- [5] Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J.. Enhancement of the Neutrality in Recommendation. RecSys 2012 Workshop.
- [6] Yao, S., & Huang, B.. Beyond Parity: Fairness Objectives for Collaborative Filtering. NIPS 2017.

InFoRM: Individual Fairness on Graph Mining

Research Questions

Q1. Measures: how to quantitatively measure individual bias?Q2. Algorithms: how to enforce individual fairness?Q3. Cost: what is the cost of individual fairness?

J. Kang, J. He, R. Maciejewski and H. Tong: InFoRM: Individual Fairness on Graph Mining. KDD 2020

Graph Mining Algorithms

Graph Mining: An Optimization Perspective

• Examples: ranking vectors, class probabilities, embeddings

Classic Graph Mining Algorithms

Examples of Classic Graph Mining Algorithm

Mining Task	Task Specific Loss Function $oldsymbol{l}()$	Mining Result Y^*	Parameters
PageRank	$\min_{\mathbf{r}} c\mathbf{r}'(\mathbf{I} - \mathbf{A})\mathbf{r} + (1 - c)\ \mathbf{r} - \mathbf{e}\ _F^2$	PageRank vector r	damping factor <i>c</i> teleportation vector e
Spectral Clustering	$\min_{\mathbf{U}} \operatorname{Tr} (\mathbf{U}' \mathbf{L} \mathbf{U})$ s. t. $\mathbf{U}' \mathbf{U} = \mathbf{I}$	eigenvectors U	# clusters <i>k</i>
LINE (1st)	$ \min_{\mathbf{X}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}[i,j] \left(\log g(-\mathbf{X}[j,:]\mathbf{X}[i,:]') \right) \\ + b \mathbb{E}_{j' \sim P_n} \left[\log g(-\mathbf{X}[j',:]\mathbf{X}[i,:]') \right] $	embedding matrix X	embedding dimension <i>d</i> # negative samples <i>b</i>

Roadmap

Motivations

- InFoRM: Individual Fairness on Graph Mining InFoRM Introduction
 InFoRM Measures

 InFoRM Algorithms
 InFoRM Cost
- Some Other Work
- Future Directions

Problem Definition: InFoRM Measures

Questions

- How to determine if the mining results are fair?
- How to quantitatively measure the overall bias?

Input

- Node-node similarity matrix S
 - Non-negative, symmetric
- Graph mining algorithm $l(\mathbf{A}, \mathbf{Y}, \theta)$
 - Loss function $l(\cdot)$
 - Additional set of parameters θ
- Fairness tolerance parameter ϵ

Output

- binary decision on whether the mining results are fair
- individual bias measure Bias(Y, S)

Measuring Individual Bias: Formulation

- **Principle:** similar nodes → similar mining results
- Mathematical Formulation

$$\|\mathbf{Y}[i,:] - \mathbf{Y}[j,:]\|_F^2 \le \frac{\epsilon}{\mathbf{S}[i,j]} \quad \forall i,j = 1, \dots, n$$

- Intuition: if S[i, j] is high, $\frac{\epsilon}{S[i, j]}$ is small \rightarrow push Y[i, :] and Y[j, :] to be more similar
- Observation: Inequality should hold for every pairs of nodes i and j
 - Problem: too restrictive to be fulfilled
- Relaxed Criteria: $\sum_{i=1}^{n} \sum_{j=1}^{n} ||\mathbf{Y}[i,:] \mathbf{Y}[j,:]||_F^2 \mathbf{S}[i,j] = 2 \operatorname{Tr}(\mathbf{Y}' \mathbf{L}_{\mathbf{S}} \mathbf{Y}) \le m\epsilon = \delta$

Measuring Individual Bias: Solution

- InFoRM (Individual Fairness on Graph Mining)
 - Given (1) a graph mining results Y, (2) a symmetric similarity matrix S and (3) a constant fairness tolerance δ
 - $-\mathbf{Y}$ is individually fair w.r.t. \mathbf{S} if it satisfies

$$\operatorname{Tr}(\mathbf{Y}'\mathbf{L}_{\mathbf{S}}\mathbf{Y}) \leq \frac{\delta}{2}$$

– Overall individual bias is $Bias(\mathbf{Y}, \mathbf{S}) = Tr(\mathbf{Y}' \mathbf{L}_{\mathbf{S}} \mathbf{Y})$

Lipschitz Property of Individual Fairness

- Connection to Lipschitz Property
 - $-(D_1, D_2)-Lipschitz property [1]: a function f is (D_1, D_2)-$ Lipschitz if it satisfies $<math display="block">D_1(f(i), f(j)) \leq LD_2(i, j), \forall (x, y)$
 - L is Lipschitz constant
 - InFoRM naturally satisfies (D_1, D_2) -Lipschitz property as long as
 - $f(i) = \mathbf{Y}[i,:]$
 - $D_1(f(i), f(j)) = \|\mathbf{Y}[i, :] \mathbf{Y}[j, :]\|_2^2, D_2(i, j) = \frac{1}{\mathbf{S}[i, j]}$
 - Lipschitz constant of InFoRM is ϵ

Roadmap

Motivations

- InFoRM: Individual Fairness on Graph Mining
 InFoRM Introduction
 InFoRM Measures
 InFoRM Algorithms
 –InFoRM Cost
- Some Other Work
- Future Directions

Problem Definition: InFoRM Algorithms

- Question: how to mitigate the bias of the mining results?
- Input
 - Node-node similarity matrix ${\bf S}$
 - Graph mining algorithm $l(\mathbf{A}, \mathbf{Y}, \theta)$
 - Individual bias measure Bias(Y, S)
 - Defined in the previous problem (InFoRM Measures)
- Output: revised mining results Y* that minimizes
 - Task-specific loss function $l(\mathbf{A}, \mathbf{Y}, \theta)$
 - Individual bias measure Bias(Y, S)

Mitigating Individual Bias: How To

• Graph Mining Pipeline

- Observation: Bias can be introduced/amplified in each component
 - Solution: bias can be mitigated in each part

Algorithmic Frameworks

- Debiasing the input graph
- Debiasing the mining model
- Debiasing the mining results
- mutually complementary

Debiasing the Input Graph

- Goal: bias mitigation via a pre-processing strategy
- Intuition: learn a new topology of graph \widetilde{A} such that
 - $-\widetilde{A}$ is as similar to the original graph A as possible
 - Bias of mining results on $\widetilde{\mathbf{A}}$ is minimized
- Optimization Problem $\min_{\mathbf{Y}} J = \|\widetilde{\mathbf{A}} - \mathbf{A}\|_{F}^{2} + \alpha \operatorname{Tr}(\mathbf{Y}' \mathbf{L}_{S} \mathbf{Y})$ s.t. $\mathbf{Y} = \operatorname{argmin}_{\mathbf{Y}} l(\widetilde{\mathbf{A}}, \mathbf{Y}, \theta)$ bias measure
- Challenge: bi-level optimization
 - Solution: exploration of KKT conditions [1, 2]

Debiasing the Input Graph

Considering the KKT conditions,

$$\min_{\mathbf{Y}} J = \left\| \widetilde{\mathbf{A}} - \mathbf{A} \right\|_{F}^{2} + \alpha \operatorname{Tr}(\mathbf{Y}' \mathbf{L}_{\mathbf{S}} \mathbf{Y})$$

s.t. $\partial_{\mathbf{Y}} l(\widetilde{\mathbf{A}}, \mathbf{Y}, \theta) = 0$

- Proposed Method
 - (1) Fix \widetilde{A} ($\widetilde{A} = A$ at initialization), find Y using current \widetilde{A} (2) Fix Y, update \widetilde{A} by gradient descent (3) Iterate between (1) and (2)
- **Problem:** how to calculate gradient w.r.t. \widetilde{A} ?

Debiasing the Input Graph

key component to calculate Calculating Gradient $\frac{\partial J}{\partial \widetilde{\mathbf{A}}} = 2(\widetilde{\mathbf{A}} - \mathbf{A}) + \alpha \left[\operatorname{Tr} \left(2\widetilde{\mathbf{Y}} \mathbf{L}_{\mathbf{S}} \frac{\partial \widetilde{\mathbf{Y}}}{\partial \widetilde{\mathbf{A}}[i, j]} \right) \right]$ $\frac{\mathrm{d}J}{\mathrm{d}\widetilde{A}} = \begin{cases} \frac{\partial J}{\partial \widetilde{A}} + (\frac{\partial J}{\partial \widetilde{A}})' - \mathrm{diag}\left(\frac{\partial J}{\partial \widetilde{A}}\right), & \text{if undirected} \\ \frac{\partial J}{\partial \widetilde{A}}, & \text{if directed} \end{cases}$ $-\widetilde{\mathbf{Y}} \text{ satisfies } \partial_{\mathbf{Y}} l(\widetilde{\mathbf{A}}, \mathbf{Y}, \theta) = 0$ $-\mathbf{H} = \left[\operatorname{Tr} \left(2 \widetilde{\mathbf{Y}} \mathbf{L}_{\mathbf{S}} \frac{\partial \widetilde{\mathbf{Y}}}{\partial \widetilde{\mathbf{A}}[i, j]} \right) \right] \text{ is a matrix with } \mathbf{H}[i, j] = \operatorname{Tr} \left(2 \widetilde{\mathbf{Y}} \mathbf{L}_{\mathbf{S}} \frac{\partial \widetilde{\mathbf{Y}}}{\partial \widetilde{\mathbf{A}}[i, j]} \right)$ **Question:** how to efficiently calculate **H**?

Instantiation #1: PageRank

- Goal: efficiently calculate H for PageRank
- Mining Results Y: $\mathbf{r} = (1 c)\mathbf{Q}\mathbf{e}$
- Partial Derivatives H: $H = 2cQ'L_Srr'$
- Remarks: $\mathbf{Q} = (\mathbf{I} c\mathbf{A})^{-1}$
- Time Complexity
 - Straightforward: $O(n^3)$
 - Ours: $O(m_1 + m_2 + n)$
 - $m_{\mathbf{A}}$: number of edges in \mathbf{A}
 - $m_{\rm S}$: number of edges in S
 - *n*: number of nodes

Instantiation #2: Spectral Clustering

- Goal: efficiently calculate H for spectral clustering
- Mining Results Y: U = eigenvectors with k smallest eigenvalues $\int_{k}^{low-rank}$
- Partial Derivatives H: H = $2\sum_{i=1}^{k} (\operatorname{diag}(\mathbf{M}_{i}\mathbf{L}_{\mathbf{S}}\mathbf{u}_{i}\mathbf{u}_{i}')\mathbf{1}_{n \times n} \mathbf{M}_{i}\mathbf{L}_{\mathbf{S}}\mathbf{u}_{i}\mathbf{u}_{i}')$
- **Remarks:** $(\lambda_i, \mathbf{u}_i) = i$ -th smallest eigenpair, $\mathbf{M}_i = (\lambda_i \mathbf{I} \mathbf{L}_A)^+$
- Time Complexity
 - Straightforward: $O(k^2(m+n) + k^3n + kn^3)$

- Ours: $O((k+r)(m_1+n) + k(m_2+n) + (k+r)^2n)$

- k: number of smallest eigenvalues
- r: number of largest eigenvalues
- m_1 : number of edges in A
- m_2 : number of edges in **S**
- *n*: number of nodes

vectorize diag(**M**_{*i*}**L**_{**S**}**u**_{*i*}**u**_{*i*}')

and stack it *n* times

Instantiation #3: LINE (1st)

- **Goal:** efficiently calculate **H** for LINE (1st)
- Mining Results Y: Y[i,:]Y[j,:]' = $\log \frac{T(\widetilde{A}[i,j] + \widetilde{A}[j,i])}{d_i d_i^{3/4} + d_i^{3/4} d_j} \log b$

- d_i = outdegree of node *i*, $T = \sum_{i=1}^n d_i^{3/4}$ and b = number of negative samples

- Partial Derivatives H: H = $2f(\widetilde{A} + \widetilde{A}') \circ L_{S} 2diag(BL_{S})\mathbf{1}_{n \times n}$
- Remarks
 - element-wise in-place calculation
 f() calculates Hadamard inverse,

 calculates Hadamard product

$$-\mathbf{B} = \frac{3}{4}f\left(\mathbf{d}^{5/4}(\mathbf{d}^{-1/4})' + \mathbf{d}\mathbf{1}_{n \times n}\right) + f\left(\mathbf{d}^{3/4}(\mathbf{d}^{1/4})' + \mathbf{d}\mathbf{1}_{n \times n}\right) \text{ with } \mathbf{d}^{x}[i] = d_{i}^{x}$$

stack **d** *n* times

- Time Complexity
 - Straightforward: $O(n^3)$
 - Ours: $O(m_1 + m_2 + n)$
 - m_1 : number of edges in **A**
 - m_2 : number of edges in **S**
 - *n*: number of nodes

vectorize diag(**BL**_S) and stack it *n* times

Debiasing the Mining Model

- Goal: bias mitigation during model optimization
- Intuition: optimizing a regularized objective such that
 - Task-specific loss function is minimized
 - Bias of mining results as regularization penalty is minimized
- Optimization Problem $\min I = l(\mathbf{A} \mathbf{Y} \theta) + \alpha \operatorname{Tr}(\mathbf{Y}' \mathbf{L}_{\mathbf{C}} \mathbf{Y})$

$$\min_{\mathbf{Y}} J = l(\mathbf{A}, \mathbf{Y}, \theta) + \alpha \operatorname{Tr}(\mathbf{Y}' \mathbf{L}_{\mathbf{S}} \mathbf{Y})$$

- Solution
 - General: solve by (stochastic) gradient descent $\frac{\partial J}{\partial \mathbf{y}} = \frac{\partial l(\mathbf{A}, \mathbf{Y}, \theta)}{\partial \mathbf{Y}} + 2\alpha \mathbf{L}_{\mathbf{S}} \mathbf{Y}$
 - Task-specific: solve by specific algorithm designed for the graph mining problem
- Advantage
 - Linear time complexity incurred in computing the gradient

Debiasing the Mining Model: Instantiations

- PageRank
 - Objective Function: $\min_{\mathbf{r}} c\mathbf{r}'(\mathbf{I} \mathbf{A})\mathbf{r} + (1 c)\|\mathbf{r} \mathbf{e}\|_F^2 + \alpha \mathbf{r}' \mathbf{L}_{\mathbf{S}} \mathbf{r}$
 - Solution: $\mathbf{r}^* = c \left(\mathbf{A} \frac{\alpha}{c} \mathbf{L}_{\mathbf{S}} \right) \mathbf{r}^* + (1 c) \mathbf{e}$
 - PageRank on new transition matrix $\mathbf{A} \frac{\alpha}{c} \mathbf{L}_{\mathbf{S}}$
 - If $\mathbf{L}_{\mathbf{S}} = \mathbf{I} \mathbf{S}$, then $\mathbf{r}^* = \left(\frac{c}{1+\alpha}\mathbf{A} + \frac{\alpha}{1+\alpha}\mathbf{S}\right)\mathbf{r}^* + \frac{1-c}{1+\alpha}\mathbf{e}$
- Spectral Clustering
 - Objective Function: $\min_{\mathbf{U}} \operatorname{Tr}(\mathbf{U}'\mathbf{L}_{\mathbf{A}}\mathbf{U}) + \alpha \operatorname{Tr}(\mathbf{U}'\mathbf{L}_{\mathbf{S}}\mathbf{U}) = \operatorname{Tr}(\mathbf{U}'\mathbf{L}_{\mathbf{A}+\alpha\mathbf{S}}\mathbf{U})$
 - Solution: \mathbf{U}^* = eigenvectors of $\mathbf{L}_{\mathbf{A}+\alpha\mathbf{S}}$ with k smallest eigenvalues
 - spectral clustering on an augmented graph $A + \alpha S$
- LINE (1st)
 - **Objective Function:** $\max_{\mathbf{x}_i, \mathbf{x}_j} \log g(\mathbf{x}_j \mathbf{x}'_i) + b \mathbb{E}_{j' \in P_n} \left[\log g(-\mathbf{x}_{j'} \mathbf{x}'_i) \right] \alpha \left\| \mathbf{x}_i \mathbf{x}_j \right\|_F^2 \mathbf{S}[i, j]$

$$\forall i, j = 1, \dots, n$$

- Solution: stochastic gradient descent

Debiasing the Mining Results

- Goal: bias mitigation via a post-processing strategy
- **Intuition:** no access to either the input graph or the graph mining model
- consistency of mining results, convex Optimization Problem $\min_{\mathbf{Y}} J = \|\mathbf{Y} - \overline{\mathbf{Y}}\|_F^2 + \alpha \operatorname{Tr}(\mathbf{Y}' \mathbf{L}_{\mathbf{S}} \mathbf{Y})$
 - $-\overline{\mathbf{Y}}$ is the vanilla mining results
- Solution: $(\mathbf{I} + \alpha \mathbf{S})\mathbf{Y}^* = \overline{\mathbf{Y}}$
 - convex loss function as long as $\alpha \ge 0 \rightarrow$ global optima by $\frac{\partial J}{\partial \mathbf{v}} = 0$
 - solve by conjugate gradient (or other linear system solvers)

Advantages

- No knowledge needed on the input graph
- Model-agnostic

bias measure. convex

Experimental Settings

• Questions:

RQ1. What is the impact of individual fairness in graph mining performance?RQ2. How effective are the debiasing methods?RQ3. How efficient are the debiasing methods?

• Datasets: 5 publicly available real-world datasets

Name	Nodes	Edges		
AstroPh	18,772	198,110		
CondMat	23,133	93,497		
Facebook	22,470	171,002		
Twitter	7,126	35,324		
PPI	3,890	76,584		

- Baseline Methods: vanilla graph mining algorithm
- Similarity Matrix: Jaccard index, cosine similarity

Experimental Settings

• Metrics

		Metric	Definition		
	Diff	$=\frac{\ \mathbf{Y}^*-\bar{\mathbf{Y}}\ _F}{\ \bar{\mathbf{Y}}\ _F}$	difference between fair and vanilla graph mining results		
		$KL(\frac{\mathbf{Y}^*}{\ \mathbf{Y}^*\ _1} \frac{\overline{\mathbf{Y}}}{\ \overline{\mathbf{Y}}\ _1})$	KL divergence		
PO1	Радекапк	Prec@50	precision		
NQI		NDCG@50	normalized discounted cumulative gain		
	spectral clustering	$NMI(\mathcal{C}_{\mathbf{Y}^*}, \mathcal{C}_{\mathbf{Y}})$	normalized mutual information		
	LINE	$ROC - AUC(\mathbf{Y}^*, \overline{\mathbf{Y}})$	area under ROC curve		
	LINE	$F1(\mathbf{Y}^*, \mathbf{ar{Y}})$	F1 score		
RQ2	$Reduce = 1 - \frac{\operatorname{Tr}((\mathbf{Y}^*)' \mathbf{L}_{\mathbf{S}} \mathbf{Y}^*)}{\operatorname{Tr}(\overline{\mathbf{Y}}' \mathbf{L}_{\mathbf{S}} \overline{\mathbf{Y}})}$		degree of reduce in individual bias		
RQ3	Runnin	g time in seconds	running time		

Experimental Results

-	Table 1: Effectiveness results for rageRank. Lower is better in gray columns. Higher is better in the others.														
	Debiasing the Input Graph														
Datacate	Laccard Index					Cosine Similarity									
Datasets	Γıff	KL	Prec@50	NDCG@50		Reduce	Time	Diff	KL		Prec@50	NDCG@50		Reduce	Time
Twitch	0.109	5.37×10^{-1}	1.000	1.000		24.7%	564.9	0.299	5.41×10^{-1}		0.860	0.899		62.9%	649.3
PPI	0.185	1.90×10^{-3}	0.920	0.944		43.4%	584.4	0.328	8.07×10^{-3}	3	0.780	0.838		68.7%	636.8
	Debiasing the Mining Model														
Datasata			Jaccard	l Index							Cosine S	imilarity			
Datasets	Diff	KL	Prec@50	NDCG@5	Τ	Reduce	Time	Diff	KL		Prec@50	NDCG@5]	educe	Гime
Twitch	0.182	4.97×10^{-3}	0.940	0.958	Τ	62.0%	16.18	0.315	1.05×10^{-5}	2	0.940	0.957		73.9%	12.73
PPI	0.211	4.78×10^{-3}	0.920	0.942	Τ	50.8%	10.76	0.280	9.56×10^{-10}	3	0.900	0.928		67.5%	10.50
				þ	eb	iasing th	e Mini	ng Resul	ts						
Datacata			Jaccard	l Index						∇	Cosine S	imilarity			
Datasets	Diff	KL	Prec@50	NDCG@50	Y	Reduce	Time	Diff	KL	X	Prec@50	NDCG@50	Í	Reduce	Time
Twitch	0.035	9.75×10^{-4}	0.980	0.986		33.9%	0.033	0.101	5.84×10^{-1}		0.940	0.958		44.6%	0.024
PPI	0.045	1.22×10^{-3}	0.940	0.958		27.0%	0.020	0.112	6.97×10^{-3}	3	0.940	0.958		45.0%	0.019

- **Obs.:** effective in mitigating bias while preserving the performance of the ۲ vanilla algorithm with relatively small changes to the original mining results
 - Similar observations for spectral clustering and LINE (1st)

Roadmap

Motivations

InFoRM: Individual Fairness on Graph Mining InFoRM Introduction InFoRM Measures InFoRM Algorithms InFoRM Cost

- Some Other Work
- Future Directions

Problem Definition: InFoRM Cost

- Question: how to quantitatively characterize the cost of individual fairness?
- Input
 - Vanilla mining results $\overline{\mathbf{Y}}$
 - Debiased mining results \boldsymbol{Y}^*
 - Learned by the previous problem (InFoRM Algorithms)
- Output: an upper bound of $\|\overline{\mathbf{Y}} \mathbf{Y}^*\|_F$
- Debiasing Methods
 - Debiasing the input graph
 - Debiasing the mining model
 - Debiasing the mining results —> main focus of this paper

depend on specific graph topology/mining model

Cost of Debiasing the Mining Results

Given

- A graph with n nodes and adjacency matrix A
- A node-node similarity matrix S
- Vanilla mining results $\overline{\mathbf{Y}}$
- Debiased mining results $\mathbf{Y}^* = (\mathbf{I} + \alpha \mathbf{S})^{-1} \overline{\mathbf{Y}}$

• If
$$\|\mathbf{S} - \mathbf{A}\|_F = \Delta$$
, we have
 $\|\bar{\mathbf{Y}} - \mathbf{Y}^*\|_F \le 2\alpha\sqrt{n}\left(\Delta + \sqrt{rank(\mathbf{A})}\sigma_{\max}(\mathbf{A})\right)\|\bar{\mathbf{Y}}\|_F$

- **Observation:** the cost of debiasing the mining results depends on
 - The number of nodes n (i.e. size of the input graph)
 - The difference Δ between \boldsymbol{A} and \boldsymbol{S}
 - The rank of A ----> could be small due to low-rank structures in real-world graphs
 - The largest singular value of A could be small if A is normalized

Cost of Debiasing the Mining Model: Case Study on PageRank

• Given

- A graph with n nodes and symmetrically normalized adjacency matrix A
- A symmetrically normalized node-node similarity matrix ${\boldsymbol{S}}$
- Vanilla PageRank vector $ar{\mathbf{r}}$
- Debiased PageRank vector $\mathbf{r}^* = (\mathbf{I} + \alpha \mathbf{S})^{-1} \overline{\mathbf{Y}}$

• If
$$\|\mathbf{S} - \mathbf{A}\|_F = \Delta$$
, we have
 $\|\bar{\mathbf{r}} - \mathbf{r}^*\|_F \le \frac{2\alpha n}{1 - c} \left(\Delta + \sqrt{rank(\mathbf{A})}\sigma_{\max}(\mathbf{A})\right)$

- **Observation**: the cost of debiasing PageRank depends on
 - The number of nodes n (i.e. size of the input graph)
 - The difference Δ between \boldsymbol{A} and \boldsymbol{S}
 - − The rank of A → could be small due to low-rank structures in real-world graphs
 - The largest singular value of A ---> upper bounded by 1

InFoRM Summary

- Problem: InFoRM (individual fairness on graph mining)
 - fundamental questions: measures, algorithms, cost
- Solutions:
 - Measures: Bias(Y, S) = Tr(Y'SY)
 - Algorithms: debiasing (1) the input graph, (2) the mining model and (3) the mining results
 input graph
 - Cost: the upper bound of $\|\overline{\mathbf{Y}} \mathbf{Y}^*\|_F$
 - Upper bound on debiasing the mining results
 - Case study on debiasing PageRank algorithm
- **Results:** effective in mitigating individual bias in the graph mining results while maintaining the performance of vanilla algorithm

Datasets		Jacca	rd Index			<u> </u>				
Datasets	(Jaccard Index				Cosine Similarity			
	Diff	NMI	Reduce	Time	Diff	NMI	Reduce	Time		
Twitch	0.031	1.000	5.44%	1698	0.107	1.000	24.5%	1714		
PPI	1.035	0.914	19.5%	829.3	0.933	0.849	24.1%	985.1		

Roadmap

Motivations

- InFoRM: Individual Fairness on Graph Mining
- Some Other Work
 - -Network Derivative Mining
 - -Adversarial Multi-Network Mining
 - -Discerning Edge Influence for Network Embedding
 - -View Adversarial Network Embedding
 - -Explainable Networked Prediction
 - -Data Debugging in Collaborative Filtering
 - Future Directions

N2N: Network Derivative Mining

Problem Dfn.

- **Given**: (1) a network *A*, (2) a mining model *L*(*A*, *Y*, *ϑ*), & (3) a scalar function *l*(*)*;
- Find: a derivative network *B*: $= \frac{\mathrm{d}l(\mathcal{Y}^*)}{\mathrm{d}\mathbf{A}} \quad \text{subject to } \mathcal{Y}^* \in \operatorname*{argmin}_{\mathcal{Y}} \mathcal{L}(\mathbf{A}, \mathcal{Y}, \theta)$
- From What/Who to How/Why
- Bi-level opt. & Scalability

Potentials & Applications

- Explainable net mining
- Adversarial net mining
- Sensitivity analysis
- Active network mining
- Counterfactual analysis

Current Scope

	Additional Parameters 0	Learning Results <i>Y</i>	Loss Function L	Learning Tasks
g factor c $l(\mathcal{Y}^*) = \mathbf{r} _F^2$	damping factor c	PageRank vector r	$\min_{\mathbf{r}} c\mathbf{r}'(\mathbf{I} - \mathbf{A})\mathbf{r} + (1 - c) \mathbf{r} - \mathbf{e} _F^2$	PageRank Ranking [1]
one $l(\mathcal{Y}^*) = \lambda_1 - \lambda_2$	none	hub vector u authority vector v	$\min_{\mathbf{u},\mathbf{v}} \mathbf{A} - \mathbf{u}\mathbf{v}' _F^2$	HITS Ranking [10]
f clusters r $l(\mathcal{Y}^*) = \sum_{i=1}^r \lambda_i$	number of clusters r	matrix U	$\min_{\mathbf{U}} \ \mathrm{Tr}(\mathbf{U}'\mathbf{L}\mathbf{U}) \text{ subject to } \mathbf{U}'\mathbf{U} = \mathbf{I}$	Spectral Clustering [2]
tensions $r = \mathbf{U}\mathbf{V}^* - \mathbf{U}\mathbf{V}' ^2$	latent dimensions r	user matrix U	min $\ \operatorname{proj}_{\Omega}(\mathbf{A} - \mathbf{U}\mathbf{V}')\ _{F}^{2} + \lambda_{w} \ \mathbf{U}\ _{F}^{2} + \lambda_{w} \ \mathbf{V}\ _{F}^{2}$	Matrix Completion [11]
arameters λ_u, λ_v $i(\mathcal{Y}) = \mathbf{U} \mathbf{V} _F$	regularization parameters λ_u , λ_v	item matrix V	\mathbf{U}, \mathbf{V} ((p = 5)) (v = 0 + 7) (p = 1 + a)) = ((p = 1 + a)) + ((p = 1 + a))	Maurx Completion [11]
g length $d = \mathbf{W} ^2$	embedding length d	embedding matrix W	$\min_{i=1}^{n} - \log Pr(v_{i_{1}}, \dots, v_{i_{i_{1}}}, v_{i_{1}+1}, \dots, v_{i_{k+1}} \mathbf{W}(\mathbf{i}, \cdot))$	Node Embedding [12]
lk length w $v(\mathcal{F}) = \mathbf{v} _F$	random walk length w	emocoding matrix w	W Use (1, -w, -1, -, +1, -1, -1, -w, -1, -, -, -, -, -, -, -, -, -, -, -, -, -,	Node Enlocading [12]
$\begin{array}{c c} l(\mathcal{Y}^*) = \lambda_1 - \lambda_2 \\ \hline f \ clusters \ r \\ \hline arameters \ \lambda_u, \ \lambda_v \\ g \ length \ d \\ lk \ length \ w \\ \end{array} \begin{array}{c} l(\mathcal{Y}^*) = \sum_{i=1}^r \lambda_i \\ l(\mathcal{Y}^*) = \mathbf{U}\mathbf{V}' _F^2 \\ \hline d(\mathcal{Y}^*) = \mathbf{W} _F^2 \end{array}$	none number of clusters r latent dimensions r regularization parameters λ_u, λ_v embedding length d random walk length w	authority vector v matrix U user matrix U item matrix V embedding matrix W	$\begin{split} \min_{\mathbf{u},\mathbf{v}} & \mathbf{A} - \mathbf{u}\mathbf{v}' _F^2 \\ \min_{\mathbf{U}} & \operatorname{Tr}(\mathbf{U}'\mathbf{L}\mathbf{U}) \text{ subject to } \mathbf{U}'\mathbf{U} = \mathbf{I} \\ \\ \min_{\mathbf{U}} & \operatorname{proj}_{\Omega}(\mathbf{A} - \mathbf{U}\mathbf{V}') _F^2 + \lambda_u \mathbf{U} _F^2 + \lambda_v \mathbf{V} _F^2 \\ \\ \\ \min_{\mathbf{W}} & -\log \Pr(v_{i-w},, v_{i-1}, v_{i+1},, v_{i+w} \mathbf{W}(\mathbf{i}, :)) \end{split}$	HITS Ranking [10] Spectral Clustering [2] Matrix Completion [11] Node Embedding [12]

Main Results: a linear algorithm (in both time & space) for each task!

- M. Wang, J. Kang, N. Cao, Y. Xia, W. Fan, H. Tong: Graph Ranking Auditing: Problem Definitions and Fast Solutions. TKDE 2020
- J. Kang and H. Tong: N2N: Network Derivative Mining. CIKM 2019
- Y. Wang, Y. Yao, H. Tong, F. Xu and J. Lu :Discerning Edge Influence for Network Embedding. CIKM 2019
- J. Kang, M. Wang, N. Cao, Y. Xia, W. Fan, and H. Tong: AURORA: Auditing PageRank on Large Graphs. BigData 2018

Admiring: Adversarial Multi-Network Mining

Problem Dfn.

- **Given**: (1) two input attributed networks G_1 and G_2 ; and (2) a multi-network mining task;
- Find: a set of most influential elements:
- Identify vulnerability
- Improve robustness
- Render explanability

Proposed Method

Generalized Sylvester Equation for multi-network mining Network Element Influence for a given mining task $f(\mathbf{X})$ Multi-network Mining Tasks **Function** $f(\cdot)$ Given two attributed networks, $G_1 = \{\mathbf{A}_1, \mathbf{N}_1\}$ and $G_2 = \{\mathbf{A}_2, \mathbf{N}_2\}$, Random walk graph kernel $f(\mathbf{X}) = \mathbf{q'}_{\times} \operatorname{vec}(\mathbf{X})$ - **Edge Influence**: the derivative of $f(\mathbf{X})$ w.r.t. this edge, $\mathcal{I}(\mathbf{A}_{1}(i,j)) = \frac{\partial f(\mathbf{X})}{\partial \mathbf{A}_{1}(i,j)}$ **Network Alignment** $f(\mathbf{X}) = \mathbf{X} \text{ or } f(\mathbf{X}) = \text{vec}(\mathbf{X})$ $\mathbf{X} = \sum_{l=1}^{l} \mathbf{c} \mathbf{M}_l \mathbf{X} \mathbf{T}'_l + \mathbf{B}_l$ rate of change Cross-network node similarity $f(\mathbf{X}) = \mathbf{X}(s, t)$ - Node Influence: the summation of influences of the Subgraph Matching $f(\mathbf{X}) = \operatorname{argmin}_{\mathbf{M}} g(\mathbf{M}, \mathbf{X})$ incident edges, $\mathcal{I}\big(\mathbf{N}_1(i)\big) = \sum_{j \mid \mathbf{A}_1(i,j) = 1} \mathcal{I}\big(\mathbf{A}_1(i,j)\big)$ $\mathbf{M}_{l} = \mathbf{N}_{2}^{1}\mathbf{A}_{2}, \mathbf{T}_{l} = \mathbf{N}_{1}^{1}\mathbf{A}_{1}$. By the Kronecker product property, $\max_{\mathcal{P}} \Delta f = (f(\mathbf{X}) - f(\mathbf{X}_{\mathcal{P}}))^2$ s.t. $|\mathcal{P}| = \mathbf{k}$ - **Node Attribute Influence**: the derivative of *f*(**X**) w.r.t. new solution matrix after $vec(ABC) = (C^T \otimes A)vec(B)$ this attribute. we perturb the network $\mathbf{A}_{\times} = \mathbf{A}_1 \otimes \mathbf{A}_2$ $\mathbf{x} = c\mathbf{N}_{\mathbf{v}}\mathbf{A}_{\mathbf{v}}\mathbf{x} + \mathbf{b}$ $\mathcal{I}(\mathbf{N}_{1}^{l}(i,i)) = \frac{\partial f(\mathbf{X})}{\partial \mathbf{N}_{1}^{l}(i,i)}$ elements in set \mathcal{P} The closed-form solution is given by $\mathbf{x} = (\mathbf{I} - c\mathbf{N}_{\times}\mathbf{A}_{\times})^{-1}\mathbf{b}$

- Q. Zhou, L. Li, N. Cao, L. Ying and H. Tong: Admiring: Adversarial Multi-Network Mining. ICDM 2019
- B. Du and H. Tong FASTEN: Fast Sylvester Equation Solver for Graph Mining. KDD2018

Results

View-Adversarial Network Embedding

Problem Dfn.

Given: a multi-view network $G = (V, E_1, E_2, ..., E_k)$;

Find: the robust and consistent node representations across k different views $\{x_{v}\}_{v \in V} \in \mathcal{R}^{d}, d \ll |V|$

Overview Framework Locality Constraints Feature Extractor F View Discriminator Node Embedding Subgraph Embedding Ds F_{N} Subgraph Representation Node Representation Generator (Discriminator D_N Real Node Noise Distribution Representation Generated Node Representation

Key Idea

 First adversarial game (F, D_S): enhances the comprehensiveness of the node representation

• Second adversarial game (G, F_N, D_N) : _{alternatively} improves the robustness of the node representation

Methods	View	Accuracy (%)			
wiethous	VIEW	Node Classification	Link Prediction		
	Follow	70.95±2.56	50.30		
DeepWalk	Mention	69.64±5.46	50.27		
Deepwark	Retweet	73.78±5.18	52.24		
	Combined	66.47±2.85	50.03		
	Follow	79.52 ± 4.42	65.45		
node?vec	Mention	79.64±3.47	62.94		
nouezvec	Retweet	81.83±4.31	52.18		
	Combined	80.59±2.75	60.61		
CrophCAN	Follow	76.15±1.92	53.97		
	Mention	71.95±2.74	51.88		
біаріюліч	Retweet	39.20±2.42	50.21		
	Combined	72.44±1.69	55.41		
	Follow	85.66 ± 2.87	56.37		
MNE	Mention	84.70±3.45	74.66		
	Retweet	85.06±3.42	76.15		
MVE	All	83.76±4.90	68.85		
VANE-RW	All	82.89±2.38	69.40		
VANE-BRW	All	90.60±2.57	85.36		
Table 2:	Performan	ce on Twitter-Rug	by Dataset		

Results

Explainable Networked Prediction

Goal: explain networked prediction

Solution

Multi-Aspect, Multi-Level Explanation										
Level Aspect	Macro/System	Meso/Task	Micro/Test example							
Training example <i>x^t</i>	Globally influential training sample $(I_G(x^t))$	Task specific influential training sample $(I_s(x^t))$	Test specific influential training sample $(I_{x_{test}^s}(x^t))$							
Learning task f_t	Globally influential task $(I_G(f_t))$	Task specific influential $task(I_s(f_t))$	Test specific influential task($I_{x_{test}^s}(f_t)$)							
Task Network A	Globally influential task connections $(I_G(A_{ij}))$	Task specific influential task connections $(I_s(A_{ij}))$	Test specific influential task connections $(I_{x_{test}^s}(A_{ij}))$							

- L. Li, H. Tong, H. Liu: Towards Explainable Networked Prediction. CIKM 2018
- 1. J. Kang, S. Freitas, H. Yu, Y. Xia, N. Cao, H. Tong: X-Rank: Explainable Ranking in Complex Multi-Layered Networks. CIKM 2018
 - Q. Zhou, L. Li, N. Cao, N. and H. Tong: Extra: Explaining Team Recommendation in Networks. Recsys 2018

Data Debugging in Collaborative Filtering

Research Questions:

- Q1. are all ratings helpful in collaborativ filtering, and if not,
- Q2. how can we mitigate harmful (i.e., overly personalized) ones to improve th overall recommendation accuracy?

Solution

Results

Meth	nod	eMF	NrMF	NoiseCorrection	CFDEBUG-full	CFDEBUG
	0.1%	0.9134 0	0.9137 0	0.9126 o	0.9052 •	0.9071 •
	0.2%	0.9140 o	0.9137 o	0.9142 0	0.9011 •	0.9037 •
modify	0.5%	0.9148 *	0.9174 *	0.9146 *	0.8943 •	0.8985 •
ratings	1%	0.9171 ∘	0.9180 *	0.9176 o	0.8880 •	0.8926 •
-	2%	0.9198 o	0.9218 *	0.9226 o	0.8812 •	0.8876 •
	5%	0.9231 *	0.9334 *	0.9251 *	0.8735 •	0.8810 •
	10%	0.9246 *	0.9495 *	0.9310 *	0.8695 •	0.8785 •

• Long Chen, Yuan Yao, Feng Xu, Miao Xu, Hanghang Tong: Trading Personalization for Accuracy: Data Debugging in Collaborative Filtering. NeuIPS 2020

Roadmap

- **Motivations**
- InFoRM: Individual Fairness on Graph Mining
- Some Other Work
- Future Directions

NetFair: Fair Network Learning

Interventionary network miningInterventionary network miningobservatory network miningStep 1Step 2 $Y^* = \operatorname{argmin} l(\mathbf{A}, \mathbf{Y}, \theta)$ Step 1

Implications

- InFoRM Algorithm
 - (debiasing A, this talk)
- Explainable mining
- Adversarial mining

- Stability analysis
- Learning w/ side info.
- Active data collection
- Debug data (optimal network)

• Key Challenge: How to compute a huge gradient matrix?

• nested opt., implicit computation, scalability, compact representation