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Abstract

Suppose certain data points are overly contaminated, then the existing principal
component analysis (PCA) methods are frequently incapable of filtering out and
eliminating the excessively polluted ones, which potentially lead to the functional
degeneration of the corresponding models. To tackle the issue, we propose a general
framework namely robust weight learning with adaptive neighbors (RWL-AN), via
which adaptive weight vector is automatically obtained with both robustness and
sparse neighbors. More significantly, the degree of the sparsity is steerable such
that only exact k well-fitting samples with least reconstruction errors are activated
during the optimization, while the residual samples, i.e., the extreme noised ones
are eliminated for the global robustness. Additionally, the framework is further
applied to PCA problem to demonstrate the superiority and effectiveness of the
proposed RWL-AN model.

1 Introduction

As for the high-quality data reconstruction, principal component analysis (PCA) [16, 4, 7] has been
widely investigated. To deal with high dimensional data, conventional PCA methods usually include
the data preprocessing, i.e., vectorization of each data point. Nonetheless, the vectorization of the
data points could easily incur the curse of dimensionality. Therefore, two-dimensional reconstruction
has been brought to the study in the field of image analysis. In sum, equipped with the PCA methods
[17, 18, 19], the statistical properties of input data can be retained under the obtained subspace.

In reality, the presence of outliers in data largely reduces the performance of PCA approaches. The
existing reconstruction methods usually promote the robustness by exploiting the robust norms as
their loss functions [10], e.g., L1-norm and non-squared F -norm. More specifically, L1-norm based
approaches [5, 14, 9] are developed to alleviate the negative effects of local ill-dimensions. For
instance, Li et al. [5] proposed the L1-norm based 2DPCA (2DPCA-L1) by optimizing multiple
projection directions sequentially. The L1-norm based methods approximate the related optimization
problem and therefore often lead to a greedy strategy, which is potentially stuck with heuristic
solutions and large computational cost. Luo et al. [6, 15] proposed a non-greedy algorithm for an
approximate solution to the L1-norm based maximization problem. Moreover, non-squared F -norm
based methods [10] are developed, where the sum of non-squared F -norm reconstruction errors is
minimized. Zhang et al. [20] optimized the robust non-squared F -norm based objective by virtue of
a dual problem, where the transitional weight is assigned to each term of the objective.

However, aforementioned robust approaches have lots of limitations. Firstly, all of them depend
on different types of loss functions, which are potentially sensitive to outliers. For instance, L1-
norm based methods are usually utilized to handle the occluded data with local outliers, while
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non-squared F -norm based approaches are effective to tackle the data with global noises. Secondly,
when certain samples are excessively polluted, weak robust methods might be incapable of preventing
the degeneration of the reconstruction. Zhang et al. [20] addressed this problem by learning a
sparse weight via a capped model [8, 2], where the threshold is pre-given to eliminate the terms with
larger reconstruction errors. In other words, the performance is sensitive to the choice of threshold.
Nonetheless, it is strenuous to search the optimal threshold with frequent inaccuracy. Accordingly,
the performance of the existing reconstruction methods is unsatisfactory.

In this paper, we propose a general framework named RWL-AN for learning an adaptive weight
vector with both robustness and sparse neighbors. RWL-AN can be further applied to a spectrum
of subspace learning approaches via the adaptive-weight strategy. Specifically speaking, RWL-AN
assigns a smaller weight to the term with larger reconstruction error automatically to reduce the
negative effect of local outliers. Besides the local robustness, the weight vector is sparse to prevent
the excessive noised terms from degrading the performance of the model. In other words, the degree
of the sparsity is steerable such that only specified k samples with least reconstruction errors are
effective to eliminate the extreme noised data points for the global robustness. By applying the
proposed RWL-AN framework to the PCA problem, the superiority and effectiveness of the proposed
method are demonstrated both theoretically and empirically.

Notations: In the paper, all the matrices are written in uppercase. For matrix M, the ij-th element
of M is denoted by mij . The trace of matrix M is denoted by Tr(M). The `2-norm of vector v is
denoted by ‖v‖2. MT denotes the transpose operation of M. The Frobenius norm of matrix M is
denoted by ‖M‖F . M⊥ denotes the orthogonal complement space of M.

2 Robust Principal Component Analysis Revisited

Given a dataset X = {x1,x2, · · · ,xN}, xi ∈ Rd represents the i-th sample. X ∈ Rd×N denotes
the associated matrix of the dataset X . To obtain the optimal mean automatically instead of directly
centering the data, Nie et al. [10] proposed a robust PCA model from the perspective of low-rank
approximation, i.e., minimizing the reconstruction errors with optimal mean as

min
m,rank(Z)=k

N∑
i=1

‖xi −m− zi‖2, (1)

where variable m ∈ Rd serves as the optimal mean in Eq. (1). Z = [z1, . . . , zN ] ∈ Rd×N
represents the low-rank approximation of X upon the orthogonal subspace W ∈ Rd×m. Via the
rank factorization of zi on the subspace W, we have zi = W(vi)T , where vi ∈ R1×m. Therefore,
problem (1) can be reformulated into

min
m,vi,WTW=I

N∑
i=1

‖xi −m−W(vi)T ‖2, (2)

whose third term within the `2-norm is the low-rank reconstructed data. Accordingly, the solution of
vi could be achieved according to the Karush-Kuhn-Tucker (KKT) condition of problem (4) with

respect to (w.r.t.) vi as ∂
N∑

i=1
‖xi−m−W(vi)T ‖2

∂vi = 0⇒ vi = (xi −m)TW.
. Therefore, problem

(2) can be addressed by solving the following dual problem:

min
m,WTW=I

N∑
i=1

pi‖
(
I−WWT

)
(xi −m) ‖22. (3)

where pi ← 1

2‖(I−WWT )(xi−m)‖2
serves as a transitional weight to be iteratively updated. In other

words, the smaller weight would be assigned to the term with larger outliers automatically and vice
versa for the robustness.

Motivated by problem (2), Zhang et al. extends it to a 2D version to enhance the robustness of
2DPCA. Denote an image dataset A = {A1,A2, · · · ,AN}, where Ai ∈ Ru1×u2 represents the i-th
image matrix. Robust 2DPCA method is formulated as

min
M,Bi,UT

1 U1=I,UT
2 U2=I

N∑
i=1

‖Ai −M−U1BiU
T
2 ‖F , (4)
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where U1 ∈ Ru1×d1 and U2 ∈ Ru2×d2 are left and right orthogonal subspaces for dimensionality
reduction, respectively. Bi ∈ Rd1×d2 denotes a low-dimenional representation of Ai. M ∈ Ru1×u2

serves as the optimal mean of input data. Since Bi is free from any constraint, problem (4) could be
rewritten as

min
M,UT

1 U1=I,UT
2 U2=I

N∑
i=1

‖Ai −M−U1U
T
2 (Ai −M)U2U

T
2 ‖F . (5)

3 Framework of Robust Weight Learning with Adaptive Neighbors

The robust PCA methods mentioned above frequently highlight the robustness and reduce the
impact of outliers by developing different metrics, which would possibly lead to various limitations.
Although sparsity could also be obtained via the capped model, the performance of the models are
often sensitive to the presetting threshold, which is difficult to determine.

In this paper, a framework regarding adaptive weight learning is developed to apply to various
reconstruction approaches. The adaptive weight vector can be achieved by the proposed framework
with 1) robustness, i.e., the term with larger reconstruction error is assigned with smaller weight to
prevent the outliers from dominating the model; 2) sparsity, i.e., the images with excessive noises
are eliminated to prevent the ill samples from decreasing the performance. Accordingly, the proposed
framework for Robust Weight Learning with Adaptive Neighbors (RWL-AN) is formulated as

min
p≥0,pT 1=1

N∑
i=1

pig(xi) + γp2i , (6)

where g(xi) ∈ R+ denotes the reconstruction function under the i-th data point xi with trade-off
parameter γ. p = [p1, p2, · · · , pN ]T is the weight vector, where pi is the weight assigned to the
i-th reconstruction term. The first term in Eq. (6) indicates that a sample with large reconstruction
error should be assigned with a small weight, while the second term is the regularization to avoid
trivial solution and over-fitting. It is worth mentioning that an efficient technique is further applied to
solving problem (6), such that the weight vector p has k adaptive neighbors (nonzero entries), i.e.,
only k best well-fitting samples are activated.

Particularly, the following specific derivation is provided to obtain the closed form solution to problem
(6). Denote g(xi) by gi, then problem (6) is equivalent to

min
p≥0,pT 1=1

N∑
i=1

1

2

(
pi +

gi
2γ

)2

. (7)

Denote g = [g1, g2, · · · , gN ]T , then problem (7) can be further rewritten as

min
p≥0,pT 1=1

1

2

∥∥∥∥p+
g

2γ

∥∥∥∥2
2

, (8)

where 0 = [0, 0, · · · , 0]T ∈ RN and 1 = [1, 1, · · · , 1]T ∈ RN . Due to the `1-ball constraint p ≥ 0
and pT1 = 1, the Lagrangian function is represented as

L(p, λ,σ) = 1

2

∥∥∥∥p+
g

2γ

∥∥∥∥2
2

− λ(pT1− 1)− σTp, (9)

where λ ∈ R and σ ∈ RN ≥ 0 are the Lagrangian multipliers. According to the KKT conditions,
the optimal solution to problem (8) satisfies

∂L(p,λ,σ)
∂p = 0⇒ pi +

gi
2γ − λ− σi = 0

pi ≥ 0
σi ≥ 0

piσi = 0

. (10)

From the KKT conditions in (10), pi, (i = 1, 2, · · · , N) can be summarized as

pi =

(
λ− gi

2γ

)
+

, (11)
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where the operator (•)+ = max(•, 0). According to Eq. (11), pi is non-negative and inversely
proportional to gi.

Furthermore, we attempt to determine λ and γ in Eq. (11). Without loss of generality, we assume
g1 ≤ g2 ≤ · · · ≤ gN and thus have p1 ≥ p2 ≥ · · · ≥ pN ≥ 0 based on the negative relationship
between pi and gi in Eq. (11). When only k neighbors of p are considered, we have{

pk > 0⇒ λ− gk
2γ > 0

pk+1 = 0⇒ λ− gk+1

2γ ≤ 0.
(12)

By combining Eq. (12) with the constraint pT1 = 1, we have

k∑
i=1

(
λ− gi

2γ

)
= 1⇒ λ =

1

k
+

1

2γk

k∑
i=1

gi. (13)

Based on the constraints in Eq. (12) and result in Eq. (13), the following inequality w.r.t. γ can be
inferred 

1
k >

gk
2γ −

1
2γk

k∑
i=1

gi

1
k ≤

gk+1

2γ −
1

2γk

k∑
i=1

gi.

⇒ k

2
gk −

1

2

k∑
i=1

gi < γ ≤ k

2
gk+1 −

1

2

k∑
i=1

gi. (14)

To achieve exact k nonzero weights, the upper bound γ = k
2gk+1 − 1

2

k∑
j=1

gj is selected. With λ and

γ in Eqs. (13) and (14) respectively, pi in (11) can be eventually formulated as

pi =

(
λ− gi

2γ

)
+

=

1

k
+

1

2γk

k∑
j=1

gj −
gi
2γ


+

=


2(k2gk+1 − 1

2

k∑
j=1

gj) +
k∑
j=1

gj − kgi

2k(k2gk+1 − 1
2

k∑
j=1

gj)


+

=

(
gk+1 − gi

kgk+1 −
∑k
j=1 gj

)
+

.

(15)
From Eq. (15) regarding the weight pi, we could notice that 1) pi is non-negative and inversely
proportional to gi, which ensures the local robustness of reconstruction problem (6), i.e., the term
with larger reconstruction error is assigned with a smaller weight; 2) if i > k, then pi = 0, which
ensures the sparsity of p in problem (6), such that only k terms with smallest reconstruction errors
are considered or activated; 3) k is a steerable integer parameter that directly manipulates the number
of activated samples, which indicates a global robustness to the outliers. According to Eq. (15),
Algorithm 1 is developed by solving the proposed RWL-AN framework in (6).

Algorithm 1: Algorithm for solving RWL-AN in (6)

Input: a vector g = [g1, g2, · · · , gN ]T that preserves the reconstruction errors under each sample;
the integer parameter k (k ≤ N) that controls the number of activated samples.

Output: a weight vector p = [p1, p2, · · · , pN ]T assigned to each term in the objective (6).

1 Sort g satisfying g1 ≤ g2 · · · ≤ gN ;

2 Calculate pi =

 gk+1−gi

kgk+1−
k∑

j=1
gj


+

, (i = 1, 2, · · · , N);
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4 Robust PCA under RWL-AN

Equipped with the RWL-AN framework in (6), we propose the robust PCA model under the proposed
RWL-AN as

min
m,vi,p,W

N∑
i=1

pi‖xi −m−W(vi)T ‖22 + γp2i

s.t. p ≥ 0,pT1 = 1,WTW = I,

(16)

where W ∈ Rd×m is the orthogonal subspaces and vi ∈ R1×m denotes a low-dimensional repre-
sentation of xi. Similar as problem (2), the optimal solution vi to problem (16) can be derived as
vi = (xi −m)TW. Specifically speaking, the term ‖xi −m −W(vi)T ‖22 exactly evaluates the
reconstruction error for the i-th data point and thus satisfies the definition of gi in the framework (6).
To solve problem (16), we utilize an alternative optimization strategy, i.e., coordinate-block descent
method [13].

Optimize W & m by fixing p: When p is fixed, problem (16) degenerates to

min
m,WTW=I

N∑
i=1

pi‖
(
I−WWT

)
(xi −m) ‖22, (17)

where m serves as the mean variable.
Theorem 1. The optimal mean m∗ in problem (17) satisfies the form of

m∗ = Xp =

N∑
i=1

pixi. (18)

Proof. By taking the derivative of Eq. (17) w.r.t. m and setting it to zero, we have(
I−WWT

) (
m1T −X

)
diag(p)1 = 0.

Note that
(
m1T −X

)
diag(p)1 = Wξ +W⊥η via the associated orthogonal decomposition, thus

we have
Wξ −Wξ +W⊥η − 0 = 0⇒ η = 0.

Due to the constraint pT1 = 1 and diag(p)1 = p, we could further obtain that

m = Xp+Wξ, (19)

where ξ is an arbitrary vector. By substituting Eq. (19), problem (17) can be rewritten as

min
m,WTW=I

N∑
i=1

pi‖
(
I−WWT

)
(xi −Xp) ‖22, (20)

which is totally independent of ξ. Therefore, we could select ξ as the zero vector for the convenience,
such that the optimal mean m∗ is represented as Eq. (18).

According to Theorem 1, the optimal solution of m to problem (17) takes the form as derived in
(18). Therefore, problem (17) could be further reformulated into

min
WTW=I

Tr(diag(p)
(
X−Xdiag(p)11T

)T (
I−WWT

) (
X−Xdiag(p)11T

)
)

⇒ max
WTW=I

Tr(WTX
(
I− diag(p)11T

)
diag(p)

(
I− 11T diag(p)

)
XTW)

= max
WTW=I

Tr(WTXDXTW),

(21)

where D = diag(p)− ppT . Hence, W are the k eigenvector matrix corresponding to the k largest
eigenvalues of XDXT [18].

Optimize p by fixing W &m: Denote ri = ‖
(
I−WWT

)
(xi −m) ‖22, then problem (16) could

be rewritten as

min
p≥0,pT 1=1

N∑
i=1

piri + γp2i . (22)
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Same as problem (6), problem (22) can be solved with the closed form solution as represented
in Eq. (15), where gi, (i = 1, 2, · · · , N) is replaced by ri, (i = 1, 2, · · · , N). k is an integer
parameter to determine the number of nonzero weights in p. Similarly, the i-th weight pi is inversely
proportional to the associated reconstruction error ri to promote the local robustness. In addition, as
for the i-th term satisfying i ≥ (k + 1), the related weight vanishes, such that the excessive outliers,
which might potentially sabotage our model can be totally prevented. In other words, the sparsity
promotes the global robustness of the reconstruction problem (16). According to Eqs. (18), (21),
and (22), an efficient algorithm can be summarized in Algorithm 2 to solve problem (16). Since the
coordinate-block descent method is utilized with achieving the closed form solutions w.r.t. W,m,
and p, Algorithm 2 monotonically converges.

Algorithm 2: Algorithm for solving robust problem (16)
Input: an image matrix X = [x1,x2, · · · ,xN ]; the number of effective samples k.
Output: orthogonal subspace W ∈ Rd×m.

1 Initialize random p satisfying pT1 = 1;
2 while not converge do
3 Update D← diag(p)− ppT ;
4 Update W← argmax

WTW=I

Tr(WTXDXTW);

5 Update ri ← ‖
(
I−WWT

)
(xi −Xp) ‖22, (i = 1, 2, · · · , N);

6 Update {pi}Ni=1 by Algorithm 1 with inputting {ri}Ni=1;
7 end

5 Experiment

Diverse experiments are conducted to evaluate the performance of our method. Firstly, the experi-
mental settings are provided. Moreover, the experimental results on different tasks are recorded.

5.1 Experimental Settings

The proposed robust PCA with RWL-AN is compared to the reconstruction methods including
conventional PCA (denoted by PCA) [4], robust PCA with optimal mean (denoted by RPCA-OM)
[10], generalized low-rank approximations of matrices (denoted by GLRAM) [18], robust 2DPCA
with optimal mean (denoted by R2DPCA) [20] and capped robust 2DPCA with optimal mean
(denoted by capped R2DPCA) [20]. The integer parameter k of our method is setted as [0.85N ] (N
is the total number of data points), such that 85% samples are assigned with non-zero weights. As for
capped R2DPCA, ε is searched in the grid of {10, 20, · · · , 50} and the best results are recorded.

Four benchmark face image datasets including AT&T [1], UMIST [3], FEI and FERET [12] are
utilized in the experiment. Table 1 reports the information for the benchmark datasets. In each
dataset, occlusions are placed with random size (over 25% area) on part of images (number of noised
samples = total number of samples × noise rate). Note that all the experiments are implemented by
MATLAB R2015b on Windows 7 PC with 3.20 GHz i5-3470 CPU and 16.0 GB main memory.

Table 1: The information of the benchmark datasets

Dataset AT&T UMIST FEI FERET
No. of images 400 575 2600 1400
Size of images 64× 64 64× 64 32× 32 80× 80

Class 40 20 200 200

All the methods are evaluated on two tasks regarding image reconstruction and clustering. As for
the reconstruction task, numerical results are recorded and compared. As for the clustering task, we
employ k-means as metric. Moreover, we run 50 times with random initialization in each experiment.
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Table 2: Reconstruction error comparison. The best is bolded and runner-up is underlined.

noise rate ours GLRAM R2DPCA capped
R2DPCA PCA RPCA-OM

AT&T raw 3.56 21.87 13.44 13.44 1197.25 5.27
0.2 6.65 59.45 26.91 21.88 1291.10 19.19

UMIST raw 4.31 23.45 16.16 16.16 674.67 6.43
0.2 8.50 59.18 28.13 24.11 720.49 26.66

FEI raw 1.35 21.26 4.29 4.29 533.63 1.99
0.2 2.19 24.81 7.45 6.52 505.60 10.30

FERET raw 14.70 44.89 30.90 30.90 1661.45 19.21
0.2 23.26 99.61 51.32 33.20 1603.78 67.75
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Figure 1: Clustering accuracy of occluded images and their reconstructed images. The x-axis
represents the reduced dimensionality d1 of subspace U1 with the dimensionality d2 of U2 satisfying
d2 = d1, while W has the dimensionality d1 × d2.

5.2 Comparison of Reconstruction Error

Reconstruction problem is to seek the optimal subspace, upon which low-rank images are recon-
structed. The performance of the reconstructed methods are measured by

∑N
i=1 pi‖xri −xoi ‖22 , where

xri represents the i-th reconstructed image and xoi is the original image. For the fair comparison,
weights are normalized. The reduced dimensionality for 2D method is d1 = 9, d2 = 10, such
that 1D methods perform with the reduced dimensionality m = 90. Table 2 records the results of
reconstruction error comparison. From Table 2, we could conclude that

1) As for the noised datasets, the proposed method achieves the best performance.

2) As for the raw datasets, RPCA-OM achieves the runner-up performance, while ours and R2DPCA
outperform GLRAM and PCA. The results also illustrate the superiority of the optimal-mean based
PCA methods.

3) By applying RWL-AN, the reconstruction performance of PCA is largely improved by outperform-
ing all the other competitors. Therefore, the effectiveness of the proposed framework RWL-AN is
verified.
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(b) FERET

Figure 2: Reconstruction errors of our proposed method w.r.t the varying parameter k = N × krate
(N is the total number of samples).
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Table 3: CPU Time comparison (seconds) when iteration number is fixed as 50 for each algorithm.

Method AT&T UMIST FEI FERET
Ours 8.14 11.40 16.76 49.03

GLRAM 6.81 8.78 14.71 45.22
R2DPCA 8.55 12.55 17.49 49.69

RPCA-OM 848.46 925.73 266.58 2902.15

4) When severe occlusions are involved in the datasets, robust methods as our proposed method,
R2DPCA, capped R2DPCA, and RPCA-OM have better performance than the conventional methods
including GLRAM and PCA.

From Figure 1, it is noticed that the robust methods as our proposed method, R2DPCA, and capped
R2DPCA are superior to GLRAM. The capped R2DPCA overcomes R2DPCA a little, while the
proposed method has the outstanding performance under the most cases.

Table 3 reports the CPU time of the comparative algorithms except for capped R2DPCA, which is
time-consuming due to tuning an appropriate threshold. We can conclude that the optimal mean
based methods including ours, R2DPCA, RPCA-OM are slower than GLRAM due to the calculation
of optimal mean in each iteration. Besides that, the time consumption of ours and R2DPCA is similar.
In fact, the computation of our weight in Eq. (15) is more complicated than R2DPCA. Nonetheless,
due to the sparse weight in the proposed method, ours often runs faster.

5.3 Comparison of Clustering

In order to demonstrate the discriminative ability of the reconstructed algorithms, we further compare
the clustering results of the reconstructed images via k-means classifier, where the clustering accuracy
[11] is computed by ACC = 1

N

∑N
i=1 δ(li,map(ci)). li denotes real label of the i-th instance, and

ci is the corresponding clustering index. map(·) denotes a function that maps each cluster index to
the best class label. δ(·) represents the δ-function, i.e., value is 1 when two input parameters are
the same, and 0 otherwise. Figure 1 shows the clustering results under the reconstructed image of
different algorithms.

1) Since twenty percent of input images are occluded by noises for each dataset, the superior clustering
performance of the proposed method implies its stronger robustness to the outliers.

5.4 Sensitivity Analysis w.r.t. Parameter k

In this part, the corresponding experiments are conducted to investigate the sensitivity of our model
(16) regarding the parameter k . We utilize two benchmark datasets known as AT&T and FERET,
whose 20% samples are contaminated as previously described. We increase the degree of sparsity
by setting krate from 0.5 to 0.95, where the parameter k is calculated by N × krate. Moreover, the
related reconstruction errors of our proposed method are shown in Figure 2.

1) The curves in Figure 2 are steady when krate is less than 0.8. Afterwards, the curves increase
rapidly, since 20% polluted samples are included.

2) Our model is insensitive to parameter krate, when the krate ≤ 0.8, which is the pivotal point.
Therefore, we can either determine krate by tuning it or simply set it as a medium value such as 0.5.

6 Conclusion

In this paper, a general framework entitled RWL-AN is proposed, such that the adaptive weight
vector is achieved automatically with the local robustness. In particular, the weight vector is sparse
with adaptive neighbors, i.e., the degree of the sparsity is steerable with only k activated samples of
least reconstruction errors. In other words, the sparsity is steerable to eliminate the excessive noised
samples for the global robustness. The framework is further applied to the PCA problem to achieve
both local and global robustness. Eventually, theoretical analysis and extensive experimental results
are presented to validate the superiority of the proposed method.
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