Proximity Tracking on Time-Evolving Bipartite Graphs

Hanghang Tong Spiros Papadimitriou Philip S. YU Christos Faloutsds

Abstract

Given an author-conference network that evolves over tin
which are the conferences that a given author is most clos
related with, and how do they change over time? Lar st
time-evolving bipartite graphs appear in many settingshst
as social networks, co-citations, market-basket analssid
collaborative filtering.

Our goal is to monitor (i) the centrality of an individ-
ual node (e.g.who are the most important auth@ys and
(i) the proximity of two nodes or sets of nodes (exgho
are the most important authors with respect to a particul ‘
conferenc®) Moreover, we want to do this efficiently anc il S
incrementally, and to provide “any-time” answers. We pri R
posepTrack andcTrack, which are based on random wall LT
with restart, and use powerful matrix tools. Experiments «

+T
ol far

[
o

—— 'Sejnowski_T’

! % - ’Koch_C’

.
13
T

—&— 'Hinton_G’

— p- - 'Jordan_M’

The Ranking of the Centrality
N
o
T
N

0 I I I I I I I I
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

(a) The ranking of centralityyfor some authors in NIPS.

real data show that our methods are effective and efficier ICDE CIKM KDD ICDM
. ICDCS ICDCS SIGMOD KDD

the mining results agree with intuition; and we achieve up t(gieveTrIcSs |CDE \COM \CDE
15~176 timesspeed-up, without any quality loss. PDIS SIGMETRICS CIKM SDM
A VLDB ICMCS ICDCS VLDB

1 Introduction 1992 1997 2002 2007

Measuring proximity (a.k.a relevance) between nodes Eb) Bhili ; : ;
. . o » p S. Yu's top 5 conferences at four time steps, using
bipartite graphs (see [18] for the formal definition of bifitar awindow of 5 years.

graph) is a very important aspect in graph mining and has _ o))
many real applications, such as ranking, spotting anomhfgureé 1: Scaling sophisticated trend analysis to time-
nodes, connection subgraphs, pattern matching and mgy@,lvmg graphs. See Section 6 for detailed description of
more (see Section 7 for a detailed review). results.

Despite their success, most existing methods are d@-author or a conference alone or, at best, a single, specific
signed for static graphs. In many real settings, the graplfighor-conference pair. Instead, we want to employ powerfu
are evolving and growing over time, e.g. new links arrive @halysis tools inspired by the well-established model of ra
link weights change. Consider an author-conference evaliom walk with restart to analyze the entire graph and provide
ing graph, which effectively contains information abou# thfurther insight, taking into account all author-confereir-
number of papers (edge weights) published by each autfigation so far, i.e., including indirect relationshipaeng
(type 1 node) in each conference (type 2 node) for each ygaim. However, if we need to essentially incorporate all
(timestamp). Trend analysis tools are becoming very pogi&irwise relationships in the analysis, scalability qlyde-
lar. For example, Google Trendprovides useful insights, comes a major issue. This is precisely the problem we ad-
despite the simplicity of its approach. For instance, in tidgess in this paper: how can we efficiently keep track of
setting of our example, a tool similar to Google Trends mightoximity and avoid global re-computation as new informa-
answer questions such alddw does the number of papersion arrives. Fig. 1 shows examples of our approach.
published by an author vary over time®r “How does the In this paper, we address such challenges in multiple
number of papers published in a particular conference or reimensions. In particular, this paper addresses the fallgw
search area (i.e., set of conferences) vary over timeffis questions:
kind of analysis takes into account paper counts for eitI@I; How to define a good proximity score in a dynamic

setting?
Tcamegie Mellon University Q2: How to incrementally track the proximity scores be-
IBM T.J. Watson Lab .
tween nodes of interest, as edges are updated?

fUniversity of lllinois at Chicago o)
Iht t p: / / waw. googl e. cont t r ends/ Q3: What data mining observations do our methods enable?

We begin in Section 2 with the problem definition and, Table 1: Symbol
in Section 3, we propose our proximity definition for dy- _ aple . ym 95
namic bipartite graphs. We carefully design our measuresyMbol | Definition and Description |

ments to deal with (1) the links arriving at differenttimepss | M® n x [time-aggregate adjacency matrix at timé
and (2) important properties, such as monotonicity. PrgxS(*) n x [slice matrix at time

imity will also serve as the basis of our centrality measuteAM® | n x [difference matrix at time t

ment in the dynamic setting. Then, in Section 4, we stud_\Dgﬂ n x n out-degree matrix for type 1 object,
c_omputathnal issues thoroughly and_propose two fc_atst algo- ie. Dgt)@ H=" M®) (i,), and

rithms, which are the core of computing our dynamic prox- D(t)(' =0 (i 7&7)

imity and centrality measurements. The complete algosthm _ 11y =073 _

to track proximity {rack-Proximity and centrality Track- | D2 I x I out-degree matrix for type 2 object,
Centrality) are presented in Section 5. In Section 6, we ver- i.e.Dg)(i, i) = Z;?ZI M® (4,4), and

ify the effectiveness and efficiency of our proposed dynamic Déﬂ (i,7) =0 (i # j)

proximity on real datasets. 1 identity matrix
The major contributions of the paper can be summarizeg a matrix with all elements equal to 0
as follows: 1 a matrix with all elements equal to 1
1: Definitions of proximity and centrality for time-| n,! number of nodes for type 1 and type 2
evolving graphs. objects, respectively(> 1)
2: Two fast update algorithmsF4st-Single-Updateand | number of edges in the bipartite graph
Fast-Batch-Update without any quality loss. c (1 —¢) is fly-out probability for random walk
3: Two algorithms to incrementally track centrality) with _ret':,tart (setto b? 0.95in ’the paper)
(Track-Centrality and proximity Track-Proximity in | "i.j proximity from node: to node; at time¢
any-time fashion. only on the case of edge additions and weight increases (e.g.

4: Extensive experimental case-studies on several radihors always publish new papers, and users always rate
datasets, showing how different queries can be dRore movies). However, the ideas we develop can be easily
swered, achieving up tb5~176xspeed-up. generalized to handle other types of link updates, such as

o links deletions or edge weights decreases.

2 Problem Definitions Given the above notion, a dynamic, evolving graph
Table 2 lists the main symbols we use throughout the pap=m be naturally defined as a sequence of observed new
Following standard notation, we use capital letters for madges and weight§(,S® ... S® . .. However, the
tricesM, and arrows for vectors. We denote the transpaséormation for a single time slice may be too sparse for
with a prime (i.e.,M’ is the transpose d¥M), and we use meaningful analysis, and/or users typically want to analyz
parenthesized superscripts to denote time (&4!) is the larger portions of the data to observe interesting pati@nas
time-aggregate adjacency matrix at tirje When we re- trends. Thus, from a sequence of slice matrices observed
fer to a static graph or, when time is clear from the contesp far, S¢) for 1 < j < ¢, we construct a bipartite
we omit the superscrigt). We use subscripts to denote thgraph by aggregating time slices. We propose three differen
size of matrices/vectors (e.d, x; means a matrix of sizeaggregation strategies, which place different emphasis on
n x [, whose elements are all zero). Also, we represent thiges based on their age. In all cases, we use thetiraen
elements in a matrix using a convention similar to Matlabggregate adjacency matr{wr adjacency matrix for short),
e.9.,M(i, j) is the element at th&" row and;** column of denoted byM ("), for the adjacency matrix of the bipartite
the matrixM, andM(i, :) is thei'® row of M, etc. With- graph at time steg. We will introduce the aggregation
out loss of generality, we assume that the numbers of typstfategies in the next section).
and type 2 objects are fixed (i.e.,and! are constant for all Finally, to simplify the description of our algorithms,
time steps); if not, we can reserve rows/columns with zen@ introduce thedifference matrix AM®, which is the
elements as necessary. difference between two consecutive adjacency matrices, i.

At each time step, we observe a set of new edges or edgel(¥) 2 M® — M(¢-1. Note that, depending on the
weight updates. These represent the link information theggregation strategy, difference matrd(¥) may or may
is available at the finest time granularity. We use tinge- not be equal to the slice matr®).
slice matrix or slice matrix for brevity, S to denote the An important observation from many real applications
new edges and additional weights that appear at timetstejs that, despite the large size of the graphs involved (with
For example, given a set of authors and annual conferentesdreds of thousands or millions of hodes and edges), the
the number of papers that authguublishes in conferencge intrinsic dimension (or, effective rank) of their corresige
during yeart is the entryS(Y)(4, j). In this paper, we focusing adjacency matrices is usually relatively small, priityar

because there are relatively fewer objects of one type.~org@ Dynamic Proximity and Centrality: Definitions

ample, on the author-conference graph fromAdataset |, this section, we introduce our proximity and centrality
(see Section 6), although we have more than 400,000 authfgnitions for dynamic bipartite graphs. We begin by re-
and about 2 million edges, with only 3500 conferences. yiewing random walk with restart, which is a good proximity
In the user-movie graph from thietFlix dataset, althoughmeasurement for static graphs. We then extend it to the dy-
we have about 2.7 million users Wlth more than 100 milligiy mic setting by 1) using different ways to aggregate edges
edges, there are only 17,700 movies. We use theskewed fom gifferent time steps, that is to place different emjihas
to refer to such bipartite graphs, i.e,,m > 1. on more recent links; and 2) usimpgree-preservatiorto

cTrack) can be formally defined as follows: 3.1 Background: Static Setting

Among many others, one very successful method to mea-

sure proximity is random walk with restart (RWR), which

Given: (i) a large,skewed time-evolving bipartite graplhas peen receiving increasing interest in recent years—see
{S® ¢+ = 1,2,...}, and (i) the query nodes of inter-section 7 for a detailed review.
estg,j,...) For a static bipartite graph, random walk with restart is

Track: (i) the top£ most related objects for each querylefined as follows: Consider a random particle that starts
node at each time step; and (ii) the proximity score (drom nodei. The particle iteratively transits to its neigh-
the proximity rank) for any two query nodes at each tinf®rs with probability proportional to the correspondinged
step. weights. Also at each step, the particle returns to riodi¢h

some restart probabilityl — ¢). The proximity score from

There are two different kinds of tracking tasks imodei to nodej is defined as the steady-state probabiljty

pTrack, both of which are related to proximity. For examthat the particle will be on nodg [24]. Intuitively, r; ; is

ple, in atime-evolving author-conference graph we carktrabe fraction of time that the particle starting from nadeill

“What are the major conferences for John Smith in the pagtend on each nodeof the graph, after an infinite number

5 years? which is an example of task (i); orHow much of steps.

credit (importance) has John Smith accumulated in the KDD If we represent the bipartite graph as a uni-partite graph

Conference so far?which is an example of task (ii). We with the following square adjacency matiW and degree

will propose an algorithmTrack-Proximity in Section 5 to matrix D:

PrOBLEM 1. pTrack

: 0 M
deal withpTrack. = [nxn
P w (M’ lel)
PROBLEM 2. cTrack (3.1) D (0D1 O]sz)
Given: (i) a large,skewed time-evolving bipartite graph Ixn 2

@ 5 — . inter- . .
{S8%,t = 1,2,...}, and (ii) the query nodes of inter-y o, o the proximity scores,; between all possible node

est(, j--) pairsi, j are determined by the matr@:
Track: (i) the top£ most central objects in the graph, for ri; = Qi)

each query node and at each time step; and (ii) t3 S N [p—

centrality (or the rank of centrality), for each quer 52)Q = (1-¢) Tt x(n+ty = cDTW)

node at each time step. Based on the dynamic proximity as in equation 3.4, we

) . _ define the centrality for a given source nodas the average
In cTrack, there are also two different kinds of trackingoximity score from all nodes in the graph (including

tasks, both of which are related to centrality. For examp itself) to s. For simplicity, we ignore the time step
in the same time-evolving author-conference graph, we c@fherscript. That is

track “How influential is author-A over the years®hich . s TitiTis
corresponds to task (i); oMfho are the top-10 influential (3-3) centrality(s) = I

authors over the years§? which corresponds to task (ii).
Note that in task (i) ofcTrack, we do not need the quer
nodes as inputs. We will propose another algoritina¢k-
Centrality) in Section 5 to deal witleTrack.

For all these tasksp{rack and cTrack), we want to
provide any-time answers. That is, we want to quick
maintain up-to-date answers as soon as we observe a
slice matrix S(Y), Some representative examples of o
methods are also shown in Fig. 1.

3.2 Dynamic Proximity

Ysince centrality is defined in terms of proximity, we will
henceforth focus only on the latter. In order to apply the
random walk with restart (see equation 3.2) to the dynamic
Fetting, we need to address two subtle but important points.
Y The first is how to update the adjacency mafsk®,
B5%d on the observed slice mat8%). As mentioned
lﬂ)refore, usually it is not enough to consider only the current

slice matrix S). For example, examining publication8.2.2 Fixed degree matrix.

from conferences in a single year may lead to proximitg a dynamic setting, if we apply the actual degree matrix
scores that vary widely and reflect more “transient” effecBB(Y) to equation (3.2) at time, the monotonicity property
(such as a bad year for an author), rather than “true” shiftfl not hold. To address this issue, we propose to use
in his affinity to research areas (for example, a shift degree-preservation [17, 31]. That is, we use the same
interest from databases to data mining, or a changedefyree matribD at all time steps.

institutions and collaborators). Similarly, examining vie Thus, our proximityrﬁ_t? from node: to nodej at time
ratings from a single day may not be sufficient to accurat&diepr is formally defined as in equation (3.4). The adjacency
capture the proximity of, say, two users in terms of theiatrix M () is computed by any update method in subsection
tastes. Thus, in subsection 3.2.1, we propose three differg 2 and the fixed degree matiX is set to be a constant)

strategies to aggregate slices into an adjacency misffiX times the degree matrix at the first time step—we always set
or, equivalently, to updatbI®). Note, however, that single-q = 1000 in this paper.

slice analysis can be viewed as a special case of the “sliding ()) (s =
H ” H Ti 1 = Q (Z)j)
window” aggregation strategy. J ~
The second point is related to the “monotonicity” of QY = (1 —c¢): (Iussyx(nisy — cDTWH)?
proximity versus time. In a dynamic setting with only link ® 0., M®
additions and weight increases (i.&((i,j) > 0, for W= <M/(tj Ole)

all time stepst and nodes, j), in many applications it is _)
desirable that the proximity between any two nodes does &) D = a-D
drop. For example, consider an author-conference blpar%e have the following lemma for our dynamic proximity

graph, where edge weights represent the number of pa SEﬁJation (3.4)). By the lemma 3.1, if the actual degree

thatan author has published in the corresponding conferenc ;) (i, 1) does not exceed the fixed degidéi, i) (condition

We would like a proximity measure that represents the toigl then the proximity between any two nodes will never drop

contribution/credit that an author has accumulated in eag long as the edge weights in adjacency maui) do not
conference. Intuitively, this score should not decreass OXirop (condition 1)

time. In subsection 3.2.2, we propaiegree-preservatioto
achieve this property. LEMMA 3.1. Monotonicity Property of Dynamic Prox-
3.2.1 Updating the adjacency matrix. imity If (1) all elements in the difference matixM® are

. . YT ~ /- - .

As explained above, it is usually desirable to analyze muffon-negative; and(t()ﬂp()(f(z_f)) <D(@@,i) (i =1, 2j = (n+
ple slices together, placing different emphasis on linkseda ()); then we have; ; > r; .~ for any two nodesi(;).
on their age. For completeness, we describe three possifi§of: First of all, sinceD®)(i,i) < D(i,i), we have
aggregation schemes. |cD-'W®|k — 0ask — oo. Therefore, we have

Global Aggregation. The first way to obtain the adja-Q(®) — (1 — () S0 o (cDT'W®)k - On the other hand,
cency matrixM() is to simply add the new edges or edggince all elements in the difference matrsM () are non-
weights inS® to the previous adjacency matM~") as negative, we havaV (¥ (i, j) > W=D (i, j) for any two

follows: b nodes(i, j). Therefore, we havQ® (i, 7) > Q*=1 (4,)
M =3 "s0) for any two nodegi, j), which completes the proof. [
=1 Finally, we should point out that, D and the non-

.) negativity of M are relevant only if a monotonic score is
We call this schemalobal aggregation It places equal yegjred.” Even without these assumptions, the correctness
emphasis on all edges from the beginning of time and, oRly efficiency of our proposed algorithms are not affected.

e e)
in this case AM(*) = S{). Next, we define schemes thaf ;o1 monotonic scores are permissible, none of these
place more emphasis on recent links. For both of theégsumptions are necessary.

schemesAM®) = S, . o .
Sliding Window. In this case, we only consider thej 1D3|/3nalm'9 Prqx'r_ngﬁ ElonputgtlopsG h
edges and weights that arrive in the péast time steps, reliminaries. bb. on Static Graphs

: " : . In this section, we introduce our fast solutions to effident
where the parameté¢n is the length of the sliding window: track dynamic proximity. We will start with BRLIN [32],

, t , a fast algorithm for static, skewed bipartite graphs. Wathe
M = Z s\ extend it to the dynamic setting.
j=max{1, t—len+1} One problem with random walk with restart is com-

putational efficiency, especially for large graphs. Accord
ing to the definition (equation (3.4)), we need to invert an
(n + 1) x (n + 1) matrix. This operation is prohibitively

Exponential Weighting. In this case, we “amplify” the
new edges and weights at tinieby an exponential factor

BB >1): MO =" FIs0),

Algorithm 1 BB_LIN score between one type-1 object and one type-2 object, only
Input: The adjacency matrix at time as in equation (3.1); one sparse vector-vector multiplication (step 4 and stap 6)

and the query nodesand;. necessary. Finally, for a proximity score between two tZpe-

Output: The proximityr; ; from node: to node;. objects (step 8), only retrieving one element in the marix

1: Pre-Computation Stage(Off-Line): is needed. As an example, on tNetFlix dataset, it takes

2: normalize for type 1 object®dr = D;' - M less than 1 second to get one proximity score. Note that all

3: normalize for type 2 objectdvic = D' - M’ possible proximity scores are determined by the mafix

4: compute the core matrixA = (I — ¢>Mc - Mr)~! (together with the normalized adjacency matridds and

5. store the matricedMir, Mc, andA. Mc). We thus refer to the matriA as the theore matrix

6: Query Stage (On-Line): 4.2 Challenges for Dynamic Setting

7: Return: r; ; = GetQij (A, Mr, Mc, i, j, c) In a dynamic setting, since the adjacency matrix changes

over time, the core matriA®) is no longer constant. In
other words, the steps 1-4 in Alg. 1 themselves become
slow for large graphs. In [32], the authors show that fer part of the on-line stage since we need to update the
skewed, static bipartite graphs, we only need to pre-coepodre matrixA(*) at each time step. If we still rely on the
and store a matrix inversion of siZze< [to get all possible straightforward strategy (i.e., the steps 1-4 in Alg. 1) to
proximity scores. BBLIN, which is the starting point for update the core matrix (referred to as “Straight-Update”),

our fast algorithms, is summarized in Alg. 1. the total computational complexity for each time step is
O(I3 +m -). Such complexity is undesirable for the online
Algorithm 2 GetQij stage. For example, 1.5 hours to recompute the core matrix
Input: The core matriXA, the normalized adjacency matrifor the NetFlix dataset is unacceptably long.
cesMr (for type 1 objects), andc (for type 2), and Thus, our goal is to efficiently update the core matrix
the query nodesand; (1 <i,j5 < (n+1)). A®) attime steg, based on the previous core matiixt—")
Output: The proximityr; ; from node: to node;j and the difference matridAM®). For simplicity, we shall
1. if i <nandj < nthen henceforth assume the use of the global aggregation scheme
20 q(i,j) =13 = j) + AMr(i,:) - A - Mc(:,) to update the adjacency matrix. However, the ideas can
3: else ifi < nandj > n then be easily applied to the other schemes, sliding window and
4 q(i,j) = cMr(i,:) - A(:,5 —n) exponential weighting.
5. elseifi > nandj <nthen 4.3 Our Solution 1: Single Update
6 q(i,j) = cA(i —n,:) - Mc(;, j) Next, we describe a fast algorithnfFgst-Single-Updafe
7: else to update the core matriA®) at time stept, if only one
8 q(i,j) =A(i—n,j—n) edge (io, jo) changes at time. In other words, there is
9: end if only one non-zero element M) : AM®) (39, jo) = wp.
10: Return: 7; ; = (1 — ¢)q(i, j) To simplify the description of our algorithm, we present the

difference matrixAM () as a from-to listio, jo, wo).

Based on Alg. 1, we only need to pre-compute and stare___ i
a matrix inversionA of sizel x I. For skewed bipartite Algorithm 3 Fast-Single-Update
graphs [< m,n), A is much cheaper to pre-computénput: The core matrixA(*—1), the normalized adjacency
and store. For example, on the entiletFlix user-movie matricesMr‘) (for type 1 objects) andIc*~ " (for
bipartite graph, which contains aboRt7M users, about type 2 objects) at time step— 1, and the difference list
18 K movies and more thatD0M edges (see Section 6 for [ig, jo, wo| at the time step.
the detailed description of the dataset), it takes 1.5 htmurgutput: The core matrixA(*), the normalized adjacency
pre-compute the8K x 18K matrix inversionA. For pre- matricesMr® andMc'") at time step.
computation stage, this is quite acceptable. 1 Mr® = Mr® Y andMc® = Mc*~ V).

On the other hand, in the on-line query stage, we cae Mr™® (i¢, jo) = Mr™® (io, jo) + TOwy
get any proximity scores using the funct!(‘thu2 . This _ Mc(t)(jo,io) _ Mc(t)(jo,io) L wo
stage is also cheap in terms of computation. For example, to D(jo+n.jo+n)
output a proximity score between two type-1 objects (step & X =052, an?t?(- 0251 . w
in GetQij) , only one sparse vector-matrix multiplication and® X(:,1) = Me™(;, do), andX (jo, 2) = 55350
one vector-vector multiplication are needed. For a protimi 6: Y (1, j0) = ﬁc;.;u%), andY (2,:) = ¢ - Mr"Y (45, :)

T — v A=) xy—1

__ZWte that in step 2 oGetQij, 1(.) is the indicator function, i.e. itis 1 ; R(f_) (:IQX%t_1)Y+ _/It(t—l)) ;() L.Y. A1
if the condition in(.) is true and O otherwise.

The correctness dfast-Single-Updatés guaranteed by step. In most cases, these new records only involve a small
the following theorem: number of authors and/or conferences—see Section 6 for the

THEOREMA4.1. Correctness of Fast-Single-Update. The details. In this section, we show that we can do a single
matrix A) maintained byFast-Single-Updatés exactly batch updateRast-Batch-Updateon the core matrix. This
the core matrix at time steg, ie., A® = (I — is much more efficient than either doing single updates

cch(t)Mr(t))q_ repeate_dly, or recomputing the core _matrix from scratc_h.
_)) The main advantage of our approach lies on the observation
Proof: first of all, since only one edg, jo) is updated that the difference matrix has low rank, and our upcoming
at timet, only theif" row of the matrixMr") and theif" aigorithm needs time proportional to thenk, as opposed to
column of the matridMc'") change at time the number of changed edgés This holds in real settings,
LetV® = 2Mc-Mr®, andv (-~ = 2Mc!"". pecause when a node is modified, several of its edges are
Mr'~), By the spectral representationsf”) andV*~1), changed (e.g., an author publishes several papers in a given

we have the following equation: conferences each year).
n LetZ = {iy,...,i5} be the indices of the involved type
t 2 (). . (t) . - L L
Vo= ¢ kZMC (k) - M (k, :) 1 objects. Similarly, let7 = {ji,...,j;} be the indices of
=1

1 the involved type 2 objects. We can represent the difference
(4.5) = V7 +94 matrix AM® as ani x [matrix. In order to simplify the
description of the algorithm, we define two matric®d/1r

wheres indicates the difference betwedA®) and V{1, _
andAMc as follows:

This gives us:
1
®) (5,
5=3(=1)7 - M (:,ig) - Mr =) (ig,:) = X - Y AMr(ks) = oMUk Js)
s=0 D(Zka Zk)
RO
where the matriceX andY are defined in steps 4-6 of AMc(s, k) = ~AM() (s ik)
Alg. 3. Putting all the above together, we have D(js +n, js +n)
AEA =(I-V) ' =1-V"I_X.Y)"! @7 (k=1,..ns = 1,..10)
Applying the Sherman-Morrison Lemma [25] to equa-
tion (4.6), we have The correctness dfast-Batch-Updatés guaranteed by
AD — AC-D L AC-D X . 1,y . ACD the following theorem:
where the2 x 2 matrix L is defined in step 7 of Alg. 3. ThisSTHEOREM4.2. Delta Matrix Inversion Theorem. The
completes the proof. O matrix A®) maintained byFast-Batch-Updatés exactly
Fast-Single-Updatés significantly more computation-the core matrix at time steg, ie., A® = (I —

ally efficient, as shown by the next lemma. In particular, tQéMc(t)Mr(t))—l_
complexity ofFast-Single-Updates only O(I?), as opposed
to O(13 + ml) for the straightforward method. Proof: Similar toFast-Single-UpdateOmitted for space.]

The efficiency ofFast-Single-Updatés given by the
following lemma. Note that the linear ter@(s) comes
from equation (4.7), since we need to scan the non-zero
Proof: Omitted for space.] elements of the difference matrixM (). Cfompared to the
4.4 Our Solutions 2: Batch Update straightforward recomputation which @(1* + ml), Fast-

- . N 2 A~ - . T A
In many real applications, more than one edges typicafiich-Updatés O(min(L, o) - I* +1m). Sincemin(l, i) <1
ways holds, as long as we have < m, Fast-Single-

change at each time step. In other words, there are multi%pdateis always more efficient. On the other hand. if we

non-zero elements in the difference matidI(*). Suppose R > . X
we have a total of, edge changes at time stepAn obvious 3077 repeated single upda_ttesAuséli @st-Single-Updatehe
computational complexity i©(rml?). Thus, since typically

choice is to repeatedly cdfast-Single-Updaté: times. R - ; o
An important observation from many real applicationgin(l, i) <, Fast-Batch-Updatés much more efficient
is that it is unlikely thesen edges are randomly distributedin this case.

Instead, they typically form a low-rank structure. That "
is, if thesern edges involven type 1 objects and type LeEmmA 4.2. Efficiency of Fast-Batch-Update. The com-

2 objects, we havé, < 7 or I < 1. For example, putational complexity of Fast-Batch-UpdateC%min(i,ﬁ)-

- - . - (‘]2 +1h).
in an author-conference bipartite graph, we will often add

a group ofrin new records into the database at one tmIBeroof' Omitted for space 0

LEmMMA 4.1. Efficiency of Fast-Single-Update. The com-
putational complexity of Fast-Single-Updatedl?).

Algorithm 4 Fast-Batch-Update

Algorithm 5 Initialization

Input: The core matrixA(*~1), the normalized adjacencyinput: The adjacency matrix at time stepM (), and the

Output: The core matrixA (), the normalized adjacency

matricesMr*~ " (for type 1 objects) andic*) (for

parameter.

type 2 objects) at time step— 1, and the difference Output: The fixed degree matrib, the normalized matri-

matrix AM® at the time step

ces at time step Mr") andMc", and the initial core
matrix A1),

matricesMr® andMc'?) at time step. 1: get the fixed degree matrl? as equation (3.4)

1: Mr® = Mr®=Y, andMc® = Mc*~ Y. 2: normalize for type 1 objectdvir¥ = D71 . M®)
2: defineAMr andAMc as in equation (4.7) 3: normalize for type 2 objectsMc(l) =D;'. M’
s Mrl(Z,7) = Mr!(Z,7) + AMr 4: get the core matrixA®) = (I — 2Mc() . Mr(M)~1
4 MCA(t)(jaI)A: Mc(7,T) + AMc 5. store the matriceMr"), Mc™", andA ™).
5: letk = min(l,n). letX = 0, ,;, andY = 0,; .,
6: if | < 7 then
7. X(,1:0) =Mc V() AMr 5.1 Track-Centrality
8 Y(+1:20,:)=AMc -Mr" (T, Here, we want to track the top-most important type 1
9 X(J,1:1)=X(J,1:1)+ AMc- AMr (and/or type 2') nodes over time. For example, on an author-
100 X(J,1: [) =X(J,1: [) +Y(i+ 1:20,) confe_rence plpartlte graph, we want to track thg top-10
11: Y(Z+ 1.9 J)=0 mos_,t influential authors (and/or conferences) over time. I_:o
12 fork—1- lédo a given query node, we also vyant to track its centrality
13: setY(k. Jk) = 1, andX (ji, k + l%) 1 (or the rank of centr.ahty.) over time. For example, on an
14: end for T ' 7 guthor-conference blpar'glte graph', we can trqck the velati
15: setX — . X. andY = 2. Y importance of an authpr in the entire gommumty.
16: else ' Based on the de_flnltlon of centrality (equatl_on 3.3) and
17: X(:,1:7) = Mc®(:, 7) the fast updaFe algorlt_hms we developed in Section 4,_we can
18: X(;,7 A1:20) = A,Mc getthgfollowmg algo.nthm (Alg. 6) .to trackthgtobquengs
19: Y(1 ’ﬁ J) = ¢ - AMr over time. The algorithm for tracking centrality for a siagl

' LY _ query node is quite similar to Alg. 6. We omit the details for
20 Y(A+1:2n,:)=c Me=D(T,) pace
21: end if pace.
22: L = (Lyjipp — Y - AUD - X) Algorithm 6 Track-Centrality(Topk Queries)
23 A = ACG-1D L AC-1) . X.L.Y AlD

5 Dynamic Proximity: Applications
In this section, we give the complete algorithms for the twa,. for each time step(t > 1) do

Input: The time-evolving bipartite
(MO AM® (t > 2)}, the parametersandk
Output: The topk most central type 1 (and type 2) objects
at each time step
1: Initialization

graphs

applications we posed in Section 2, thatlisgck-Centrality 5.
and Track-Proximity For each case, we can track tbp- ,.
queries over time. Fofrack-Centrality we can also track
the centrality (or the centrality rank) for an individualde
For Track-Proximity we can also track the proximity (or the
proximity rank) for a given pair of nodes. 2.
In all the cases, we first need the following function
(i.e., Alg. 5) to do initialization. Then, at each time step,g.
we update (i) the normalized adjacency matridds;* and
Mr"), as well as the core matribd®); and we perform
(i) one or two sparse matrix-vector multiplications to get Instep 8 of Alg. 6, we can either usast-Single-Update
the proper answers. Compared to the update time (partFast-Batch-Updateo update the normalized matrices
(i), the running time for part (ii) is always much less. SdIr'Y andMc®, and the core matriA). The running
our algorithms can quickly give the proper answers at edthe for steps 3-8 is much less than the update time (step 8).
time step. On the other hand, we can easily verify that olinus, Track-Centralitycan give the ranking results quickly
algorithms give the exact answers, without any quality log$ each time step. On the other hand, using elementary
or approximation. linear algebra, we can easily prove the correctneSsaxfk-

z=11xn -Mr® - A®;andy = 1,,, - A®

' =c- x4y

' =c- r72 -Mc®

output the togk type 1 objects according tg” (larger
value means more central)

output the togk type 2 objects according t8’ (larger
value means more central)

. UpdateMr®), Mc®, andA® for ¢ > 2.

9: end for

Centrality. Algorithm 7 Track-Proximity(Top-k Queries)

LEMMA 5.1. Correctness ofTrack-Centrality. The vectors Input: The time-evolving bipartite graphs
7' and73’ in Alg. 6 provide a correct ranking of type Land {M®,AM®(t > 2)}, the parameters: and F,
type 2 objects at each time step That is, the ranking is ~ and the source node

exactly according to the centrality defined in equat{@r8). Output: The top4 most related type 1 (and type 2) objects
for s at each time step

5.2 Track-Proximity

1. Initialization

Here, we want to track the topmost related/relevant type 2: for each time step(t > 1) do

1 (and/or type 2) objects for object A at each time step. Fog;
example, on an author-conference bipartite graph evolving
over time, we want trackWhich are the major conferences s:
for John Smith in the past 5 yedrdr “Who are most the 6:
related authors for John Smith so fdrFor a given pair of 7:
nodes, we also want to track their pairwise relationship oves:
time. For example, in an author-conference bipartite graph
evolving over time, we can trackHow much credit (a.k.a 10:
proximity) John Smith has accumulated in KDD? 11:
The algorithm for topk queries is summarized in Alg. 7.
The algorithm for tracking the proximity for a given pair ofi2:
nodes is quite similar to Alg. 7. We omit its details for space
In Alg. 7, again, at each time step, the update time wilk:

fori=1:ndo
s = GetQij(A®), Mr® Mc® s, i, ¢))
end for
letri = [rs;](i=1,...n)
forj=1:1do
rs.; = GetQij (AW, Mr® Mc® s, 5 +n,c))
end for
letrs = [rs;](j =1,...0)
output the togk type 1 objects according tg’ (larger
value means more relevant)
output the togk type 2 objects according tg’ (larger
value means more relevant)
updateMr®, Mc®, andA® for ¢ > 2.

dominate the total computational time. Thus by using eithes: end for
Fast-Single-Updater Fast-Batch-Updatewe can quickly
give the ranking results at each time step. Similafrack-
Proximity, we have the following lemma for the correctnesrresponds to one year, from 1987 to 1999. For each year,
of Track-Proximity we have an author-paper bipartite graph. Rows represent
authors and columns represent papers. Unweighted edges
etween authors and papers represent authorship. There are
,037 authors, 1,740 papers, and 13 time steps (yearsain tot
with an average of 308 new edges per year.
The DM, AC, and ACPost datasets are from DBLP
6 Experimental Results For the first two, we use paper publication years as times-

In this section we present experimental results, after W&NPS, similar tNIPS. Thus each graph slicgcorresponds

introduce the datasets in subsection 6.1. All the experisnel® ON€ year. _ _
are designed to answer the following questions: DM uses author-paper information for each year be-
tween 1995-2007, from a restricted set of conferences,

o EffectivenessWhat is the quality of the applicationsname|y the five major data mining conferences (‘KDD',
(Track-Centralityand Track-Proximity we proposed in cpwm. ‘SDM’. ‘PKDD’ and ‘PAKDD’). Similarto NIPS

i 2
this paper rows represent authors, columns represent papers and un-

« Efficiency:How fast are the proposed algorithniagt- Weighted edges between them represent authorship. There
Single-Update and Fast-Batch-Updatier the update are 5,095 authors, 3,548 papers, and 13 time steps (years) in

time, Track-Centrality and Track-Proximity for the total, with an average of 765 new edges per time step.
overall running time)? AC uses author-conference information from the entire

6.1 Datasets. DBLP collection, between years 1959-2007. In contrast

We use five different datasets in our experiments, sumrﬁ%—DM' columns represent conferenceg and _edges connect
uthors to conferences they have published in. Each edge

rized in Table 6.1. We verify the effectiveness of our préa-) . .
posed dynamic centrality measuresiiPS, DM, andAC, in S is weighted by the number of papers published by the

and measure the efficiency of our algorithms using the lar hﬂ énztgg cotrrr]espogdSIr;gi confference for th(;"t 4)gef_1r. Thtere
ACPostandNetFlix datasets. re ' authors, 3, conierences, an Ime SLeps

The first datasetNIPS) is from the NIPS proceedings (years) with an average of 26,508 new edges at each time
The timestamps are publication years, so each graphl\svzliceS ep.

LEMMA 5.2. Correctness ofTrack-Proximity. The vectors
7’ andr3 in Alg. 7 provide a correct ranking of type 1 an
type 2 objects at each time step That is, the ranking is
exactly according to the proximity defined(Bi4).

Shttp: //ww. cs. t oront o. edu/ ~r owei s/ dat a. ht m http://ww.informatik.uni-trier.de/ ey/db/

Rank of Proximity from VLDB to KDD
T T T

Table 2: Datasets used in evaluations !

Name nxl Ave.mn time steps °
NIPS 2,037< 1,740 308 13
DM 5,095« 3,548 765 13 :Z
AC 418,236<3,571 26,508 49 -
ACPost 418,236<3,571 1,007 1258 ol
NetFlix 2,649,42%17,770 100,480,507 NA |

ACPost is primarily used to evaluate the scalability
of our algorithms. In order to obtain a larger number of ol ‘ ‘ ‘ ‘ ‘ ‘
timestamps at a finer granularity, we use posting date on 199 1097 1099 2001 2003 2005 2007
DBLP (the ‘mdate’ field in the XML archive qf DBLP, which Fig re 2: The rank of the proximity from ‘VLDB' to ‘KDD’
represents when the paper was entered into the databausp 5’0 each year
rather than publication year. Thus, each graph sfice
corresponds to one day, between 2002-01-03 and 2007 @spectively. We can also track the centrality values as wel
24. ACPost is otherwise similar toAC, with number of as their rank for an individual author over the years. Fig) 1(
papers as edge weights. There are 418,236 authors, 3/¥®ts the centrality ranking for some authors over the years
conferences, and 1,258 time steps (days with at least Aaain, the results are consistent with intuition. For exémp
addition into DBLP), with an average of 1,007 new edgd4ichael I. Jordon starts to have significant influence (withi
per day. top-30) in the NIPS community from 1991 on; his influence

The final datasetNetFlix, is from the Netflix prizé. rapidly increases in the following up years (1992-19954 an
Rows represent users and columns represent movies. $#ays within the top-3 from 1996 on. Prof. Christof Koch
user has rated a particular movie, we connect them with @<och_C’) from Caltech remains one of the most influential
unweighted edge. This dataset consists of one slice and(W#hin top-3) authors in the whole NIPS community over
use it in subsection 6.2 to evaluate the efficieRagt-Single- the years (1990-1999).

Update In total, we have 2,649,429 users, 17,770 movieB's_Q_2 Results orTrack-Proximity.

and 100,480,507 edges. We first report the results on til¥M dataset. We use “Global

6.2 Effectiveness: Case Studies Aggregation” to update the adjacency matrix at each time
Here, we show the experimental results for the three appgliep. In this setting, we can track the tbpnost related

cations on real datasets, all of which are consistent with @apers/authors in the data mining community for a given
intuition. query author up to each year. Table. 4 lists the top-5 most
related authors for ‘Jian Pei’ over the years (2001-2007).
The results make perfect sense: (1) the top co-author (Prof.

- . (1) ‘Jiawei Han’) is Prof. Jian Pei's advisor; (2) the other top
Aggregation” to update the adjacency mabik®). We track collaborators are either from SUNY-Buffalo (Prof. Aidong

the top4 (kK = 10) most central (i.e.influential) authors i . .
the whole community. Table 3 lists the results for eve%é‘ ir;g),\/\(/)eri f@;}g“"\/}/ﬁit}sﬁ’g glgsr:rezglgr?aiiews,irl::aelx;pof
e

two years. The results make sense: famous authors in .
y i held a faculty position at SUNY-Buffalo; (3) the IBM-

NIPS community show up in the top-10 list and their relati R , s ,
rankings change over time, reflecting their activity/influe \«(R/atzggfg\l,lzrbg;?:m (Philip S. Yu' and "Haixun Wang’) got

. . tro

in the whole NIPS community up to that year. For exampl%, -

Prof. Terrence J. Sejnowski (‘Sejnowski) shows in the rThVe\zln,V\\/Iventati)p[[)r/Tra:(CI:r-]Pro>r<|r:(1i|21/itonr trr:lfinda';a?eACi.v N

top-10 list from 1989 on and his ranking keeps going u °re, we want 1o track tne pro y ra g for a give
air of nodes over time. Fig. 2 plots the rank of proximity

in the following years (1991,1993). He remains numbr m the ‘VLDB’ conference to the ‘KDD’ conference. We

1 from 1993 on. Sejnowski is one of the founders e “Global Agareqation” to update the adiacency matri
NIPS, an IEEE Fellow, and the head of the Computatior]Lgi ggregat up J Y X.

Neurobiology Lab at the Salk institute. The rest of the this way, proximity between the "VLDB' and "KDD

top-placed researchers include Prof. Michael I. Jordg%nferences measures the importance/yelevance of ‘KDD'
(JordanM) from UC Berkeley and Prof. Geoffrey E.wrt ‘VLDB’ up to each year. From the figure, we can see

Hinton (‘Hinton.G’) from Univ. of Toronto, well known that the rank of 'KDD" keeps going up, reaching the fifth

for their work in graphical models and neural networkggSz't(')%n?t?ayr :OSOLJS%MTESEDicooggerzﬂgezgjéTVL,EB

this order. The result makes sense: with more and more
Shttp: // www. net flixprize. con multi-disciplinary authors publishing in both commungie

6.2.1 Results onfrack-Centrality.
We apply Alg. 6 to theNIPS dataset. We use “Global

Table 3: Top-10 most influential (central) authors up to eyger.

1987 1989 1991 1993 1995 1997 1999
TAbbott L7 "Bower_J' 'Hinton &° 'Sejnowski_T' "Sejnowski T' 'Sejnowski T' "sejnowski_TT
'Burr D' "Hinton_G’ 'Koch_C' 'Koch_C' *Jordan M' 'Jordan M’ "Koch_C'
"Denker J7 "Tesauro G’ 'Bower_J" 'Hinton G* 'Hinton G' 'Koch_C’ "Jordan M'
"scofield C "Denker_J° 'Sejnowski T' 'Mozer M' "Koch 'Hinton G' "Hinton G'
TBower T° "Mead C7 'LeCun ¥' 'LeCun_Y' "Mozer M "Mozer M’ "Mozer M7
"Brown_N' "Tenorio M' 'Mozer M' 'Denker J° 'Bengig T 'Dayan_E' "Dayan_P'
"Carley L' "Sejnowski_T" 'Denker J° "Bower_J' "Lippmann R’ 'Bengio Y' "singh §7
"Chou_E7 "Lippmann_ R’ "Waibel A" "Kawato M’ "LeCun Y' 'Barto A’ "Bengio_Y'
"Chover_J" "Touretzky D’ "Moody J* 'Waibel A" "Waibel A' 'Tresp V' "Tresp_V'
"Eeckman F' "Koch_c” 'Lippmann_ R’ "gimard BT *Simard BT "Moody_J” "Moody_J7

Table 4: Top-5 most related authors for ‘Jian Pei’ up to eagdry

2001 2003 2005 2007
*Jiawei Han' "Jiawei Han' '"Tiawel Han' "Jiawel Han'
'Behzad:Mortazavi—ASl' 'Behzad:Mortazavi—Asl' ‘Haixun:Wang' 'Haixun:Wang'
"Hongjun_Tu” "Aidong Zhang' 'Aldong Zhang’ "Philip 8. wu’
"Meichun Hsu’ TPhilip 5. ¥u’ 'Philip_§._Yu’ "Wel Wang'
"Shiwei Tang’ "Hongjun_Tu’ 'Weil Wang” 'Aidong Zhang’
10000 __ Compare with Update Time running time for update and then give the total running
f L4] time for each time step. We use the two largest datasets
Lovol L@ Swagh-Upcae :] (ACPostandNetFlix) to measure performance.
g 1o 6.3.1 Update Time
£ 4 We first evaluaté&ast-Single-UpdateBoth ACPostandNet-
=] 10 - .
: I Flix are used. For each dataset, we randomly add one new
= : : edge into the graph and compute the update time. The ex-
& periments are run multiple times. We comp&eest-Single-
01 Ty — Updatewith Straight-Update (which dodsx [matrix in-
T Datasets version at each time step) and the result is summarized

Figure 3: Evaluation ofFast-Single-Update For both in Fig. 3—Note that the y-axis is in log-scale). On both
datasets, one edge changes at each time step. The gdiasetsFast-Single-Updateequires significantly less com-
ning time is averaged over multiple runs of experiments apdtation: onACPost, it is 64x faster (.5 seconds vs.32
shown in logarithmic scale. seconds), while oiNetFlix, it is 176x faster £2.5 seconds
vs4, 313 seconds).

(databases and data mining), ‘'KDD’ becomes more and To evaluateérast-Batch-Updatewe useACPost From
more closely related to ‘VLDB’. t = 2 and on, at each time step, we have betwées 1 and

We also test the top-queries onAC. Here, we use 5, = 18,121 edges updated. On average, there are 913 edges
“Sliding Window” (with window lengthlen = 5) to update updated at each time stet > 2). Note that despite the
the adjacency matrix. In this setting, we want to track thgrge number of updated edges for some time steps, the rank
top-k most related conferences/authors for a given quesyithe difference matrix (i.emin(7, 1)) at each time step is
node in the past 5 years at each time stepFig. 1(b) relatively small, ranging from 1 to 132 with an average of
lists the top-5 conferences for Dr. ‘Philip S. Yu'. The3. The results are summarized in Fig 4. We plot the mean
major research interest (top-5 conferences) for ‘Philip §date time vs. the numbetj of changed edges in Fig 4(a)
Yu' is changing over time. For example, in the yeargnd the mean update time vs. the rankix((7,[)) of the
1988-1992, his major interest is in databases (‘ICDE’ angdate matrix in Fig 4(b). Compared to the Straight-Update,
‘VLDB’), performance (‘SIGMETRICS’) and distributed Fast-Batch-Updateis again much faster, achieving 5-32x
systems (ICDCS’ and ‘PDIS’). However, during 2003speed-up. On average, it is 15x faster than Straight-Update
2007, while databases ('ICDE’ and ‘VLDB’) are still one))
of his major research interests, data mining became a str§rigg2 Total Running Time

research focus (‘KDD’, ‘SDM'’ and ‘ICDM’). Here, we study _the total running time at eagh_time step
. for Track-Centrality The results fofTrack-Proximity are
6.3 Eifficiency similar and omitted for space. Farack-Centrality we let

After initialization, at each time step, most time is spent g, algorithm return both the top-10 type 1 objects and the

updating the core matrid(®), as well as the normalizediy 10 type 2 objects. We use thetFlix dataset with one
adjacency matrices. In this subsection, we first report the

IS
S

10,000

w
&

w—fll Track-Centrality ,
= =§ lte-Alg
111 @ Straight-Update

@
S

1,000 -
251

20+ Fast-Batch-Update ||
+ -+ Straight-Update

151

100

Mean Running Time (Sec)
Mean Running Time (Sec)

100 E
100

s5r \/\//\ 1
— L

5000 10,000 15,000 20,000 T
of edges changed at time t 1

fmmmmmmmmm

=)

*®

.-
DBLP_AC_Poster NetFlix
Dataset

(a) Running Time vsmn
Figure 5: Overall running time at each time step Toack-
Centrality. For ACPost, there are multiple edges changed
e at each time step; and fddetFlix, there is only one edge

sor] changed at each time step. The running time is averaged in
25)] multiple runs of experiments and it is in the logarithm scale

15

40

35

Mean Running Time (Sec)

101

J o 7, 9, 5, 22], frequent substructure discovery [33], inflleenc
, / ‘ ‘ propagation [16], and community mining [10][12][13].
° misiornumof(?r?volvedcg:femces,awr?volved;ligms)all\igel o In termS Of CentralltyY Google,s PageRank a.lgO'

.) . rithm [23] is the most related. The proposedck-Centrality
(b) Running Time vsmin(7,) can actually be viewed as its generalization for dynamic bi-
Figure 4: Evaluation ofrast-Batch-Update partite graphs. As for proximity, the closest work is random
walk with restart [15, 24, 32]. The proposé&khck-Proximity
is its generalization for dynamic bipartite graphs. Otlegr-r
resentative proximity measurements on static graphsdieclu
%Ihe sink-augmented delivered current [8], cycle free ¢iffec
conductance [17], survivable network [14], and direction-
- : ware proximity [31]. Although we focus on random walk
procedure [27] to compute proximity and centrality at ea@v}th restart in this paper, our fast algorithms can be easily

fume'step (referred as ‘lte-Alg) Th_e results are Sumnmj.lzadapted to other random walk based measurements, such
in Fig. 5. We can see that in either case, our algorithm

(Track-Centrality is much faster. For example, it take S [8, 31]. Also, there are a lot .Of appllcgtlons Of prox-
27.8 seconds on average on tetFlix dataset, which is Imity measurements. Representative work includes connec-

155x faster over“Straight-Update” (4,315 seconds); and:?tosen S:Jabgt:s?g%[séjr:t’ezn?!bgggg dh?mO;h%O?eft?ir:\q/:F?{]5I]n z%zr
93x faster over “lte-Alg” (2,582 seconds). In either case grap ' 9 '

the update time foffrack-Centralitydominates the overallrﬁOdaI correlation discovery [24], the BANKS system [1],

running time. For example, on tHRCPost dataset, updatelmkpredICtlon [20], pattern matching [30], detecting ama-

time accounts for more than 90% of the overall running tini%glzt?c?r?aelsR:r?lg[ﬂTs in a graph [27], ObjectRank [4] and

(2.4 seconds vs. 2.6 seconds). Thus, when we have to track . - .
; : Dynamic Graph Mining. More recently, there is an
queries for many nodes of interest, the advantagératk- . A g)
increasing interest in mining time-evolving graphs, sush a

Centralityover “Ite-Alg” will be even more significant, since s L9 . .

. dc-ﬁn5|f|cat|on laws and shrinking diameters [19], community
at each time step we only need to do update once foréfjlvolution [3], dynamic tensor analysis [28], and dynamic
queries, while the running time of “Ite-Alg” will increasecommunities, [6y26] To the best gf our kn,owled g there
linearly with respect to the number of queries.) . ' j s . ‘edge,

is no previous work on proximity for time-evolving graphs.

7 Related Work Remotely related work in the sparse literature on the topic

In this section, we review the related work, which can & [21]. However, we have a different setting and focus

categorized into two parts: static graph mining and dynanfgmpared with [21]: we aim to incrementally track the

graph mining. proximity and centrality for nodes of interest by quickly
Static Graph Mining. There is a lot of research workuPdating the core matrix (as well as the adjacency matrices)

on static graph mining, including pattern and law mining [Vhile in [21] the authors focus on efficiently using time
information by adding time as explicit nodes in the graph.

edge changed at each time step &@Post dataset with
multiple edges changed at each time step.

We compare our algorithmsTtack-Centrality) with
(i) the one that uses Straight-Update in our algorithm4 (s
referred as “Straight-Update”); and (ii) that uses itemti

8 Conclusion

(11]

In this paper, we study how to incrementally track the node

proximity as well as the centrality for time-evolving bifite on _
graphs. To the best of our knowledge, we are the first to study communities from link topology.

(12]

the node proximity and centrality in this setting. The major

contributions of the paper include:

1:

2:

(13]

Proximity and centrality definitions for time-evolving{l“]

graphs.

Two fast update algorithmd=gst-Single-Updateand
Fast-Batch-Updatg that do not resort to approximatiory1 5]

and hence guarantee no quality loss (see Theorem 4.2).
: Two algorithms to incrementally track centrality

(Track-Centrality and proximity {Track-Proximity, in

any-time fashion. 17

. Extensive experimental case-studies on several r[eaﬂ
datasets, showing how different queries can be ghg)
swered, achieving up tb5~176xspeed-up.

[19]

] D. Kempe, J. Kleinberg, and E. Tardos.

F. Geerts, H. Mannila, and E. Terzi. Relational linksbd
ranking. InVLDB, pages 552-563, 2004.

D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
IMth ACM Conf. on
Hypertext and Hypermedigpages 225-234, New York, 1998.
M. Girvan and M. E. J. Newman. Community structure is
social and biological networks.

M. Grotschel, C. L. Monma, and M. Stoer. Design of
survivable networks. Itandbooks in Operations Research
and Management Science 7: Network Modilisrth Holland,
1993.

J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold
ranking based image retrieval. WCM Multimedia pages
9-16, 2004.

Maximizing the
spread of influence through a social netwdfoD, 2003.

Y. Koren, S. C. North, and C. Volinsky. Measuring and
extracting proximity in networks. 1KDD, 2006.

D. C. Kozen.The Design and Analysis AlgorithmSpringer-
Verlag, 1992.

J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graples o

We can achieve such speedups while providing exact an- ime: densification laws, shrinking diameters and possible
swers because we carefully leverage the fact that the rank of

graph updates is small, compared to the size of the origifzd]
matrix. Our experiments on real data show that this typjcall

translates to at least an order of magnitude speedup. [21]
References [22]
[23]

(1]

(2]
(3]

B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. ke,

and S. S. Parag. Banks: Browsing and keyword searching in
relational databases. WiLDB, pages 1083-1086, 2002.

R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the24]
world wide web.Nature (401):130-131, 1999.

L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and
X. Lan. Group formation in large social hetworks: membefZ>
ship, growth, and evolution. IKDD, pages 44-54, 2006.

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objec[26]

trank: Authority-based keyword search in databases. In

VLDB, pages 564-575, 2004.

[5] A. Broder, R. Kumar, F. Maghoull, P. Raghavan, S. R&27]

(6]

(7]
(8]

[10]

jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph struc-
ture in the web: experiments and models. UWWW Conf.
2000.

Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng.
Evolutionary spectral clustering by incorporating tempor[
smoothness. IKDD, pages 153-162, 2007.

S. Dorogovtsev and J. Mendes. Evolution of network&30]
Advances in Physi¢$1:1079-1187, 2002.

C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discov
ery of connection subgraphs. KDD, pages 118-127, 2004. (31]
M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-
law relationships of the internet topolog8|GCOMM pages (3
251-262, Aug-Sept. 1999.

G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-
organization and identification of web communitielEEEE (33]
Computer 35(3), Mar. 2002.

2] H. Tong, C. Faloutsos, and J.-Y. Pan.

explanations. IiKDD, pages 177-187, 2005.

D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. IRroc. CIKM, 2003.

E. Minkov and W. W. Cohen. An email and meeting assistant
using graph walks. ICEAS 2006.

M. E. J. Newman. The structure and function of complex
networks.SIAM Review45:167-256, 2003.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project989
Paper SIDL-WP-1999-0120 (version of 11/11/1999).
J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
tomatic multimedia cross-modal correlation discovery.
KDD, pages 653-658, 2004.

Au-
In

] W. Piegorsch and G. E. Casella. Inverting a sum of medic

In SIAM Reviewvolume 32, pages 470-470, 1990.

J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. YuplGra

scope: parameter-free mining of large time-evolving gsaph
In KDD, pages 687—696, 2007.

J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbo
hood formation and anomaly detection in bipartite graphs. |
ICDM, pages 418-425, 2005.

28] J. Sun, D. Tao, and C. Faloutsos. Beyond streams antigjrap

dynamic tensor analysis. KDD, pages 374-383, 2006.

29] H. Tong and C. Faloutsos. Center-piece subgraphs:lgmob

definition and fast solutions. IKDD, pages 404—-413, 2006.
H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Reat
best-effort pattern matching in large attributed graphs. |
KDD, pages 737-746, 2007.

H. Tong, C. Faloutsos, and Y. Koren. Fast direction1@va
proximity for graph mining. IrKDD, pages 747-756, 2007.
Random walk with
restart: Fast solutions and applicationgKnowledge and
Information Systems: An International Journal (KAIS)07.

D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed
frequent-pattern sets. MLDB, pages 709-720, 2005.

