
Fast Eigen-Functions Tracking on Dynamic Graphs

Chen Chen

Arizona State University

cchen211@asu.edu

Hanghang Tong

Arizona State University

hanghang.tong@asu.edu

Abstract

Many important graph parameters can be expressed as eigen-

functions of its adjacency matrix. Examples include epi-

demic threshold, graph robustness, etc. It is often of key

importance to accurately monitor these parameters. For ex-

ample, knowing that Ebola virus has already been brought

to the US continent, to avoid the virus from spreading away,

it is important to know which emerging connections among

related people would cause great reduction on the epidemic

threshold of the network. However, most, if not all, of the

existing algorithms computing these measures assume that

the input graph is static, despite the fact that almost all real

graphs are evolving over time. In this paper, we propose

two online algorithms to track the eigen-functions of a dy-

namic graph with linear complexity wrt the number of nodes

and number of changed edges in the graph. The key idea

is to leverage matrix perturbation theory to efficiently up-

date the top eigen-pairs of the underlying graph without re-

computing them from scratch at each time stamp. Experi-

ment results demonstrate that our methods can reach up to

20× speedup with precision more than 80% for fairly long

period of time.

Keywords: dynamic graph; connectivity; graph spectrum;

attribution analysis

1 Introduction

Among others, node importance and graph connectivity are

of key importance to understand fundamental characteris-

tics of a network (such as social networks, power grid,

transportation network, etc). To date, many different pa-

rameters of the graph have been invented to measure those

properties from different perspective. One most commonly

used parameter for node importance estimation is eigenvec-

tor centrality [15], which is effective on identifying influen-

tial nodes over the whole network. As for connectivity in

the graph, important parameters include epidemic threshold

([28, 4, 20]), clustering coefficient [29] and graph robustness

([2, 8, 5]). One interesting observation is that many of those

parameters can be calculated or estimated accurately by cer-

tain functions of the eigen-pairs of the graph. For exam-

ple, it has been found that for an arbitrary graph, the tipping

point for the dissemination process is controlled by the lead-

ing eigenvalue of certain system matrix associated with the

graph [28, 20]. As for the clustering coefficient computation,

instead of doing
(
n
3

)
inspections for counting triangles, [26]

proposed a fast counting algorithm based on the top eigen-

values of the graph. Moreover in [5], Chan et al. showed that

natural connectivity [31], a function based on top eigenval-

ues of the graph, is a good measurement of graph robustness.

Most of the algorithms that compute the above

parameters/eigen-functions are based on static graphs. How-

ever in real world networks, the graph structure keeps evolv-

ing over time. It is of great importance to keep track of

those measurements since subtle changes on graph structure

may lead to sharp changes on the overall properties. For

example, in epidemic process, some emerging connections

between people may increase the leading eigenvalue a lot,

and thus reduce the epidemic threshold, which in turn makes

the virus easier to spread through the network. By monitor-

ing related parameters in the network over time, we would

be able to know when the change happens and identify its

cause/attribution timely. Consider another scenario in so-

cial network sites, since the connections between users could

change dramatically day by day, the influential individuals

would therefore be changed as well, which is important for

online marketing companies change their ads targeting strat-

egy over time.

However, simply re-computing the eigen-pairs when-

ever the graph has been changed is computationally costly

if not infeasible over fast changing large graphs. The pop-

ular Lanczos method would require O(mk + nk2) time to

compute the top-k eigen-pairs, where m and n are the num-

bers of edges and nodes in the graph. Such a complexity,

even though might be acceptable for static graphs, would be

expensive for dynamic graphs. To address this chalellenge,

instead of re-computing the eigen-pairs from scratch at each

time stamp, we consider to update the eigen-pairs based on

its previous ones. In this paper, we propose two online algo-

rithms to track the eigen-pairs of a dynamic graph efficiently.

Our algorithms have a linear time complexity wrt the num-

ber of nodes n in the graph and the number of changed edges

s in each time stamp, where s is often much smaller than the

total number of the edges m.

In addition to the problem definition, the main contribu-

559 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

tions of this paper can be summarized as follows:

• Algorithms. We propose two online algorithms to track

the top eigen-pairs of a dynamic graph, which in turn

enable us to track a variety of important network pa-

rameters based on certain eigen-functions. At each time

stamp, we provide additional methods for attribution

analysis on eigen-functions.

• Evaluations. We evaluate our methods on real-world

dataset, demonstrating their effectiveness, efficiency

and the balance between these two.

The rest of the paper is organized as follows: In Section

2, a brief survey of related studies on graph spectrum and

dynamic graphs are provided. A formal problem definition

is given in Section 3. Section 4 gives the first order and high

order eigen-functions tracking algorithms and corresponding

analysis. Experimental results are shown in Section 5 and we

conclude in Section 6.

2 Related Work

Eigen-pairs of a graph can be derived to many different

important parameters to describe the graph from different

aspects. Those parameters are widely used for different

graph mining tasks. Tracking those eigen-functions on fast

changing dynamic graphs can be abstracted as a process

of conducting evolutionary analysis on streaming networks.

Here we organize our related work into two sections: (A)

work on applications of different eigen-functions, and (B)

work on dynamic graph analysis.

2.1 Applications of Eigen-functions

According to [6], the eigen-pairs on adjacency matrix and

those on Laplacian matrix of a graph have different mean-

ings. The eigenvalues of adjacency matrix can be used to de-

termine the path capacity of a graph [10], while for Laplacian

matrix, they indicate the connectivity of the graph. Based

on these two meanings, a large amount of work was devel-

oped regarding to path capacity and graph connectivity re-

spectively.

In [26] and [27], Tsourakakis found that the total num-

ber of triangles in the graph and number of triangles that con-

tain certain node can be efficiently estimated with the eigen-

values of graph adjacency matrix. In [9] and [4], Ganesh et

al. and Chakrabati et al. proved that the epidemic threshold

for SIS model on arbitrary undirected network is related to

the leading eigenvalue of graph adjacency matrix. Prakash et

al. further improved their work by proving that the threshold

for a variety of cascade models on arbitrary network is de-

pended on the first eigenvalue of certain system matrix asso-

ciated with the network. Tong et al. proposed a node manip-

ulation method in [25] and edge manipulation method in [24]

to optimize the change of first eigenvalue in the graph. In [5],

Chan et al. proposed a more general robustness measure-

ment and provided corresponding graph manipulating strate-

gies (on both nodes and edges) to optimize the robustness

score. On the other hand for Laplacian matrix of the graph,

Newman has shown that the eigen-pairs of Laplacian matrix

can be used for community detection [16],[17]. In our work,

we will focus on the eigen-functions of graph adjacency ma-

trix.

2.2 Dynamic Graphs Analysis

Dynamic graph analysis has attracted much attention in

recent years. Aggarwal and Subbian have made a thorough

summary of related research in [1]. The research on dynmaic

graph analysis can be generally sorted into two categories:

(A) monitoring the change on the evolving graph and (B)

efficiently update the data mining results over graph changes.

In [12] and [13], Leskovec et al. discovered the growth

pattern of real graphs by their densities and diameters. As

graph mining tasks varies from one another, the parameters

tracked in the process are different. In [23], two online

algorithms were provided for tracking node proximity and

centrality on bipartite graphs. In [14], Malliaros et al.

defined a new graph robustness property based on top k

eigen-pairs of the graph, and proposed an algorithm to

detect communities and anomalies. Similar mechanism for

anomaly detection was used in [11] based on eigen-pairs of

dependency matrix of the graph. Ferlez et al. [7] proposed

a dynamic graph monitoring algorithm based on MDL [3]

which can be used to detect the changing communities in the

evolving process. The other area of research that is remotely

related to our work is evolutionary spectral clustering on

graphs. In [18], Ning et al. proposed an incremental spectral

clustering algorithm based on iterative update on the eigen-

system of the graph.

3 Problem Definition

In this section, we introduce the notations used through

out the paper, and three important eigen-functions in graph

mining, followed by a formal definition of eigen-functions

tracking problem.

3.1 Notations The symbols used through out the text is

shown in Table 1. We consider the graph in each time stamp

Gt(V,E) is undirected and unipartite. In consistent with

standard notation, we use bold upper-case for matrices (e.g.,

B), and bold lower-case for vectors (e.g., b). For each time

stamp, the graph is represented by its adjacency matrix A
t.

ΔA
t denotes the perturbation matrix from time t to t + 1.

(λt
j ,uj

t) is the jth eigen-pair of At. The number of triangles

and robustness score of the graph at time t is represented as

�(Gt) and S(Gt) respectively.

With the above notations, the eigen-function is defined

as a function that maps eigen-pairs of the graph to certain

graph attribute or attribute vector, which can be expressed as

(3.1) f : (Λk,Uk) → R
x(x ∈ N)

560 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Table 1: Symbols used in text.
Symbol Definition and Description

Gt(V,E) undirected, unipartite network at

time t

m number of edges in the network

n number of nodes in the network

B,C, . . . matrices (bold upper case)

b, c, . . . vectors (bold lower case)

A
t adjacency matrix of Gt(V,E) at

time t

ΔA
t perturbation matrix from time

t to t+ 1
�(Gt) number of triangles in Gt

S(Gt) robustness score of Gt

(λj
t,uj

t) jth eigen-pair of At

[ΔA
t]t=t1...t2 perturbation matrices of dynamic

graph from time t1 to t2
[(Λk

t,Ut
k)]t=t1...t2 top k eigen-pairs from time

t1 to t2
[�(Gt)]t=t1...t2 �(G) from time t1 to t2
[S(Gt)]t=t1...t2 S(G) from time t1 to t2

3.2 Important Eigen-Functions .

Eigenvalues and Eigenvectors Since the eigen-pairs of

a graph are important attibutes themselves, the simpliest

eigen-function is therefore an identity function as follows.

(3.2) f((Λk,Uk)) = (Λk,Uk)

The eigenvalues of a graph’s adjacency matrix can be used to

measure the path capacity of a graph [10], while the eigen-

vectors can be used to evaluate the centrality of nodes [15],

or to detect interesting subgraphs [21].

In most of the applications, only top k (k varies under

different settings) eigen-pairs (Λk
t,Ut

k) are used. Therefore

it is not necessary to compute the complete set of eigen-pairs

in real analysis.

Number of Triangles in Graph. The number of triangles in

a graph plays an important role in calculating clustering co-

efficient and related attributes. The brute-force algorithm for

solving this problem is of complexity O(n3). State-of-the-

art algorithm has reduce the complexity to O(n2.373) [30],

but this is still not a scalable algorithm on real world large

dataset. In [26], Tsourakakis proposed a fast triangle count-

ing algorithm which showed that the number of triangles in

a graph(�(G)) can be estimated using Equ. (3.3).

(3.3) f((Λk,Uk)) = �(G) =
1

6

k∑

i=1

λ3
i

By Equ. (3.3), number of triangles �(G) therefore becomes

a function of eigenvalues Λk. Again, for real-world graphs,

we usually only need top k eigenvalues to achieve a good ap-

proximation for triangle counting. For example, experiments

in [26] showed that picking top 30 eigen-pairs can achieve an

accuracy of at least 95% in most graphs.

Robustness Measurement. The robustness score of a net-

work evaluates it tolerance under error and external attacks.

Although there are many kinds of robustness measurements

being used in graph analysis, few of them can act as an

universal standard that can fully express the resilience of

the network from different points of view. [5] provided a

thorough analysis of different robustness measurements and

proposed the idea of using natural connectivity as robust-

ness score, which overcomes most of the shortcomings that

previous measurements have. The definition of robustness

score(S(G)) [5] is shown in Equ. (3.4).

(3.4) f((Λk,Uk)) = S(G) = ln(
1

k

k∑

j=1

eλj)

By Equ. (3.4), robustness score S(G) is also a function of

eigenvalues Λk.

Once again, [5] found that top k (k = 50 in their study)

eigen-pairs are sufficient for estimating robustness score.

3.3 Problem Definition

In all the above cases, the network parameters of interest

(e.g., epidemic threshold, eigen centrality, the number of

triangles, the robustness measurement) can always be ex-

pressed as functions of eigen-pairs of the underlying graph.

What is more, for real graphs, it is often sufficient to use top-

k eigen-pairs to achieve a high accuracy estimation of these

parameters. Therefore, in order to track these parameters on

a dynamic graph, we only need to track the corresponding

top-k eigen-pairs at each time stamp. Formally, the eigen-

function tracking problem is defined as follows. Once the

top-k eigen-pairs are estimated, we can use Equ (3.2) to (3.4)

to update the corresponding eigen-functions.

PROBLEM 1. Top-k Eigen-Pairs Tracking

Given: (1) a dynamic graph G tracked from time t1 to t2
with starting matrix A

t1 , (2) an integer k, and (3) a

series of perturbation matrices [ΔA
t]t=t1,...t2−1;

Output: the corresponding top-k eigen-pairs at each time

stamp [(Λk
t,Ut

k)]t=t1,...,t2 .

4 TRIP: Tracking Eigen-Pairs

In this section, we present our solutions for Problem 1. We

start with a baseline solution (TRIP-BASIC), and then present

its high-order variant (TRIP), followed by the attribution

analysis for different eigen-functions.

4.1 TRIP-BASIC

Given any pair of adjacency matrices of a dynamic graph G

in two consecutive time stamps, At and A
t+1, the adjacency

matrix at t+1 can be viewed as a perturbated version of that

561 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

at t, with the perturbation as ΔA
t = A

t+1 − A
t. By (first

order) matrix perturbation theory [22], we can approximate

the eigen-pairs of A
t+1 by that of A

t using Equ. (4.5),

without re-computing them from scratch.

λt+1
j = λt

j +Δλj = λt
j + uj

t′ΔAuj
t

uj
t+1 = uj

t +Δuj = uj
t +

k∑

i=1,i �=j

(
ui

t′ΔAuj
t

λt
j − λt

i

ui
t)

(4.5)

Suppose A
t is perturbed with a set of edges ΔE =<

p1, r1 >, . . . , < ps, rs > where s is the number of non-zero

elements in perturbation matrix ΔA. In Equ. (4.5), the term

uj
t′ΔAuj

t can be expanded as

(4.6) uj
t′ΔAuj

t =
∑

<p,r>∈ΔE

ΔA(p, r)upj
t
urj

t

Equ. (4.5) and Equ. (4.6) naturally lead to our base solution

(TRIP-BASIC) for solving Problem 1 as follows.

Algorithm 1 TRIP-BASIC: First Order Eigen-Pairs Tracking

Input: Dynamic graph G tracked from time t1 to t2, with

starting eigen-pairs (Λk
t1 ,Ut1

k), series of perturbation

matrices [ΔA
t]t=t1,...t2−1

Output: Corresponding eigen-pairs [(Λk
t,Ut

k)]t=t1+1,...t2

1: for t = t1 to t2 − 1 do

2: for j = 1 to k do

3: Initialize Δuj ← 0

4: for i = 1 to k,i �= j do

5: Δuj ← Δuj +
ut

i

′

ΔAtut
j

λt
j
−λt

i

u
t
i

6: end for

7: Calculate Δλj ← u
t
j

′
ΔA

t
u
t
j

8: Update λt+1
j ← λt

j +Δλj

9: Update uj
t+1 ← uj

t +Δuj

10: end for

11: end for

12: Return [(Λk
t,Ut

k)]t=t1+1...t2

The approximated eigen-pairs for each time stamp is

computed from step 2 to 10. Each Δλj and Δuj is calcu-

lated from step 3 to 7 by Equ. (4.5) and (4.6). At step 8 and

9, λt
j and uj

t is updated with Δλj and Δuj . Note that af-

ter updating the eigenvector in step 9, we normalize each of

them to unit length.

Complexity Analysis The efficiency of proposed Algorithm

1 is summarized in Lemma 4.1. Both time complexity and

space complexity is linear wrt the total number of the nodes

in the graph (n) and total number of the time stamps (T).

LEMMA 4.1. Complexity of First Order Eigen-Function

Tracking. Suppose T is the total number of the time

stamps, s is the average number of perturbed edges in

[ΔA
t]t=t1,...t2−1, then the time cost for Alg. 1 is O(Tk2(s+

n)); the space cost is O(Tnk + s).

Proof. In each time stamp from time t1 to t2 − 1, top

k eigen-pairs are updated in steps 2-10. By Equ. (4.6),

the complexity of computing term uj
t′ΔAuj

t is O(s), so

the overall complexity of step 5 is O(s + n). Therefore

calculating Δuj from step 4 to 6 takes O(k(s+ n)). In step

7, computing Δλj takes another O(s). Updating λt
j and uj

t

in step 8 and 9 takes O(1) and O(n). Therefore updating

all top-k eigen-pairs Uk
t and Λt

k takes O(k2(s + n)) and

O(ks) respectively. Thus the overall time complexity for T

iterations is O(Tk2(s+ n)).
For space cost, it takes O(k) and O(nk) to store Λt

k

and Uk
t for each time stamp. In update phase from step

2 to 10, it takes O(s) to store ΔA
t, O(1) to update λt

j and

O(n) to update uj
t. However the space used in update phase

can be reused in each iteration. Therefore the overall space

complexity for T time stamps takes a space of O(Tnk + s).

4.2 TRIP

The baseline solution in Algorithm 1 is simple and straight-

forward, but it has the following limitations. First, the

approximation error of first order matrix perturbation is in

the order of ‖ΔA‖. In other words, the quality of such an

approximation might decreases quickly wrt the increase of

‖ΔA‖. Second, the approximation quality is highly sensive

to the small eigen-gap of A
t as indicated by Equ. (4.5).

In order to address these limintations, we further propose

Algorithm 2 by adopting the high order matrix perturbation

to update the eigen-pairs of A
t+1. The main difference

between Algorithm 2 and Algorithm 1 is that we take high

order terms into consideration while updating eigenvectors.

Details are shown in Appendix.

In Algorithm 2, the top-k eigen-pairs at each time stamp

is updated from step 2 to 11. In step 2, matrix X
t is

calculated for computing ΔΛk and ΔUk. In step 4, all

top-k eigenvalues Λk are updated by ΔΛk. From step 6

to 10, each uj
t is updated according to the derivations of

the eigen update rule in Appendix. Again, after we update

the eigenvector in step 9, we normalize each of them to unit

length.

Complexity Analysis The efficiency of Algorithm 2 is given

in Lemma 4.2. Compared with TRIP-BASIC, both time and

space complexity are still linear wrt total number of nodes

in the graph and total number of time stamps, with a slight

increase in k, which is often very small.

1Here the diag function works the same with the one in Matlab. When

apply to a matrix, diag returns a vector of the main diagonal elements of

the matrix; when apply to a vector, it returns a square diagonal matrix with

the elements of vector on the main diagonal.

562 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 2 TRIP: High Order Eigen-Pairs Tracking

Input: Dynamic graph G tracked from time t1 to t2, with

starting eigen-pairs (Λk
t1 ,Ut1

k), series of perturbation

matrices [ΔA
t]t=t1,...t2−1

Output: Corresponding eigen-pairs [(Λk
t,Ut

k)]t=t1+1,...t2

1: for t = t1 to t2 − 1 do

2: Calculate X
t ← U

t
k

′
ΔA

t
U

t
k

3: ΔΛk ← diag(Xt)1

4: Update Λt+1

k ← Λt
k +ΔΛk

5: for j = 1 to k do

6: Calculate v ← λt
j +Δλj − λt

p for p = 1, . . . , k
7: D

t ← diag(v)
8: Calculate αj ← (Dt −X

t)−1
X(:, j)

9: Calculate Δuj ←
∑k

i=1
αijui

t

10: Update uj
t+1 ← uj

t +Δuj

11: end for

12: end for

13: Return [(Λk
t,Ut

k)]t=t1+1...t2

LEMMA 4.2. Complexity of High Order Eigen-Function

Tracking. Suppose T is the total number of time stamps, s is

the average number of perturbed edges in [ΔA
t]t=t1,...t2−1,

then the time cost for Alg. 2 is O(T (k4 + k2(n + s))); the

space cost is O(Tnk + k2 + s).

Proof. In each time stamp from time t1 to t2 − 1, top k

eigen-pairs are updated in steps 2-11. Using the update

rule provided in Equ. (4.6), calculating X
t in step 2 takes

O(k2s). Updating top eigenvalues in step 3-4 takes O(k).
From step 5-11, eigenvectors are updated. It takes O(k3)
in to do matrix inversion and multiplication in step 8 and

O(nk) to calculate Δuj in step 9. Therefore updating U
t
k

takes O(k4 + nk2)). Thus the overall time complexity for T

iterations takes O(T (k4 + k2(n+ s))).
For space cost, it takes O(k) and O(nk) to store Λt

k

and Uk
t, O(s) to store ΔA

t for each time stamp. In the

update phase from step 2 to 11, it takes O(k2) to store and

calculate Xt, Dt; O(k) to store v and αj; O(k2) to calculate

αj. However the space cost in update phase can be reused in

each iteration. Therefore the overall space complexity for T

time stamps takes a space of O(Tnk + k2 + s).

Again, for the detailed derivation of TRIP, please refer to the

Appendix.

4.3 Attribution Analysis

Based on our TRIP algorithm, we can effectively track

the corresponding eigen-functions of interest (as defined in

subsection 3.2). In reality, we might also be interested

in understanding the key factors that cause these changes

in dynamic graph. For example, among all the changed

edges in ΔA, which edge is most important in causing the

inrease/decrease of the epidemic threshold, or the number of

triangles, etc. The importance of an edge < p, r >∈ ΔE can

be measured as the change it can make on the corresponding

eigen-functions, which can be written as

score(< p, r >) ∼ Δf<p,r> = fG∪<p,r> − fG

where f(.) is one of eigen-functions we define in subsection

3.2.

5 Experimental Evaluation

In this section, we evaluate TRIP-BASIC and TRIP on real

dataset. All the experiments are designed to answer the

following two questions

• Effectiveness: how accurate are our algorithms in track-

ing eigen-functions and analyzing corresponding attri-

butions?

• Efficiency: how fast are our algorithms?

5.1 Experiment Setup

Machine. We ran our experiment in a machine with 2

processors Intel Xeon 3.5GHz with 256GB of RAM. Our

experiment is implemented with Matlab.

Dateset. The dataset we used for evaluation is Au-

tomonous system graph, which is available at http://

snap.stanford.edu/data/. The graph has recorded

communications between routers in the Internet for a long

period of time. Based on the data from [19], we constructed

an undirected dynamic communication graph that contains

100 daily instances with time span from Nov 8 1997 to Feb

16 1998. The largest graph among those instances has 3,569

nodes and 12,510 edges. The dataset shows both the addition

and deletion of nodes and edges over time.

Evaluation Metrics. For the quality of eigen-functions track-

ing, we use the error rate ε. For eigenvalues, number of tri-

angles and robustness measurement, their error rate are com-

puted as ε = |f−f∗|
f∗

, where f and f∗ are the estimated and

true eigen-function values, respectively. For eigenvector, the

error is computed as ε = 1 − uu∗

‖u‖‖u∗‖ , where u is the es-

timated eigenvector and u
∗ is the corresponding true eigen-

vector. For attribution analysis, we use the top-10 precision.

For efficiency, we report the speedup of our algorithms over

the re-computing strategy which computes the correspond-

ing eigen-pairs from scratch at each time stamp.

5.2 Effectiveness Results

A. Effectiveness of Eigen-Function Tracking. Fig. 1 to 4

compare the effectiveness of TRIP-BASIC and TRIP using

different number of eigen-pairs (k). We have the following

observations. First, for all the four eigen-functions, both

algorithms could reach an overall error rate below 20%

at the end of the tracking process. Second, when k is

increased from 50 to 100, TRIP-BASIC could get a relatively

more stable approximation over the tracking process. Third,

TRIP is more stable and overall reaches a smaller error rate

compared with TRIP-BASIC. For example, as time goes by,

563 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

TRIP-BASIC starts to fluctuate sharply when k = 50 on all

four eigen-functions. Finally, the error on the number of

triangles is relatively higher. This is probably because that

the number of triangles is the sum of cubic eigenvalues, and

small errors on eigenvalues would therefore be magnified on

the final result.

B. Effectiveness of Attribution Analysis. For attribution anal-

ysis, we divided the changed edges at each time stamp into

two classes: edges being added and edges being removed.

And among these two classes, we ranks those edges accord-

ing to their attribution score defined in section 4. As a conse-

quence, the top ranked edges are the ones that have most im-

pact on the corresponding eigen-functions. Here we scored

and ranked those edges with our approximated eigen-pairs

and true eigen-pairs respectively and then compare the sim-

ilarity between the two ranks. The precision of attribution

analysis therefore is defined as the precision at rank 10 in

approximated rank list. The results are shown in Fig. 5 and

6. For the analysis on both added edges and removed edges,

TRIP overall outperforms TRIP-BASIC.

5.3 Efficiency Results

Fig. 7 shows the average speed up with respect to different k

values. We see that both TRIP-BASIC and TRIP can achieve

more than 20× speed up when k is small. As k increases,

the speedup decreases.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Number of Eigen−Pairs k

S
p

e
e

d
u

p

Trip−Basic

Trip

Figure 7: The running time speedup of TRIP-BASIC and

TRIP wrt to k.

6 Conclusion

In this paper, we study the problem of eigen-functions

tracking on dynamic graphs. We first introduce different

kinds of eigen-functions and their applications. In order to

efficiently track these functions over time, we propose TRIP-

BASIC and TRIP. In addition, we also provide a method

to identify the attribution for the change of eigen-functions

over time. Our experiments show that both TRIP-BASIC

and TRIP can effectively and efficiently track the change of

eigen-pairs, number of triangles and robustness score in the

graph, while TRIP is more stable over time. In both cases, the

accumulated error rate inevitably keeps increasing as time

goes by. One interesting future research is to study when to

reset the algorithms over time.

7 Appendix

Here, we provide the detailed derivations of eigen-pairs’

update process used in TRIP. We would like to emphasize

that the derivations themselves are based on the standard

matrix perturbation theory [22], which are not the primary

contribution of this paper.

For eigenvector approximation in TRIP, suppose Δuj =∑k

i=1
αijui

t, let X
t(p, i) denotes up

t′ΔAui
t(p, i =

1, . . . , k) and D
t denotes diag(λt

j + Δλj − λt
p) for p =

1, . . . , k, we will show in the following that αj = (Dt −
X

t)−1
X

t(:, j) where αj = [α1j , . . . , αkj]
Give perturbation matrix ΔA

t of At, we have

(At +ΔA
t)(uj

t +Δuj) = (λt
j +Δλj)(uj

t +Δuj)

Expanding the equation above, we get

A
t
uj

t +ΔA
t
uj

t +A
tΔuj +ΔA

tΔuj

=λt
juj

t +Δλjuj
t + λt

jΔuj +ΔλjΔuj

By the fact that At
uj

t = λt
juj

t, the above equation can be

further simplified as

ΔA
t
uj

t +A
tΔuj +ΔA

tΔuj

=Δλjuj
t + λt

jΔuj +ΔλjΔuj

Replacing all Δuj terms with
∑k

i=1
αijui and multiplying

the term up
t′ (for 1 ≤ p ≤ k, p �= j) on both size, by

applying the orthogonality property of eigenvectors to the

new equation, we have

X
t(p, j) + αpjλ

t
p +

k∑

i=1

X
t(p, i)αij = αpjλ

t
j + αpjΔλj

which can be rewritten as

X
t(p, j)− αpj(λ

t
j +Δλj − λt

p) +

k∑

i=1

X
t(p, i)αij = 0

By the definition of Xt, Dt and αj, the above equation can

be expressed as

X
t(:, j)−D

tαj +X
tαj = 0

Solve the above equation for αj, we have

αj = (Dt −X
t)−1

X
t(:, j)

564 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time Stamp

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

k=50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time Stamp

F
ir

s
t

E
ig

e
n

v
a

lu
e

 E
rr

o
r

R
a

te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 1: The error rate of first eigenvalue approximation.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time Stamp

F
ir

s
t

E
ig

e
n

v
e

c
to

r
E

rr
o

r
R

a
te

k=50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time Stamp

F
ir

s
t

E
ig

e
n

v
e

c
to

r
E

rr
o

r
R

a
te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 2: The error rate of first eigenvector approximation.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Time Stamp

#
T

ri
a

n
g

le
s

 E
rr

o
r

R
a

te

k=50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

Time Stamp

#
T

ri
a

n
g

le
s

 E
rr

o
r

R
a

te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 3: The error rate of number of triangles approximation.

8 Acknowledgement

This material is supported by the National Science

Foundation under Grant No. IIS1017415, by the

Army Research Laboratory under Cooperative Agreement

Number W911NF-09-2-0053, by Defense Advanced Re-

565 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Time Stamp

R
o

b
u

s
tn

e
s

s
 S

c
o

re
 E

rr
o

r
R

a
te

k=50

Trip−Basic

Trip

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Time Stamp

R
o

b
u

s
tn

e
s

s
 S

c
o

re
 E

rr
o

r
R

a
te

k=100

Trip−Basic

Trip

(a) k=50 (b) k=100

Figure 4: The error rate of robustness score approximation.

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 A

d
d

e
d

 E
d

g
e

s
 P

re
c

is
io

n

First Eigenvalue

Trip−Basic

Trip

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 A

d
d

e
d

 E
d

g
e

s
 P

re
c

is
io

n

Number of Triangles

Trip−Basic

Trip

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 A

d
d

e
d

 E
d

g
e

s
 P

re
c

is
io

n

Robustness

Trip−Basic

Trip

(a) First Eigenvalue (b) Number of Triangles (c) Robustness

Figure 5: Average precision over time for the attribution analysis (added edges).

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 R

e
m

o
v

e
d

 E
d

g
e

s
 P

re
c

is
io

n

First Eigenvalue

Trip−Basic

Trip

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 R

e
m

o
v

e
d

 E
d

g
e

s
 P

re
c

is
io

n

Number of Triangles

Trip−Basic

Trip

 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Eigen−Pairs

T
o

p
 1

0
 R

e
m

o
v

e
d

 E
d

g
e

s
 P

re
c

is
io

n

Robustness

Trip−Basic

Trip

(a) First Eigenvalue (b) Number of Triangles (c) Robustness

Figure 6: Average precision over time of the attribution analysis (removed edges).

search Projects Agency (DARPA) under Contract Number

W911NF-11-C-0200 and W911NF-12-C-0028, by National

Institutes of Health under the grant number R01LM011986,

Region II University Transportation Center under the project

number 49997-33 25.

The content of the information in this document does not

necessarily reflect the position or the policy of the Govern-

ment, and no official endorsement should be inferred. The

U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copy-

right notation here on.

566 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

References

[1] Charu Aggarwal and Karthik Subbian. Evolutionary net-

work analysis: A survey. ACM Computing Surveys (CSUR),

47(1):10, 2014.

[2] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi.

Error and attack tolerance of complex networks. Nature,

406(6794):378–382, 2000.

[3] Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum

description length principle in coding and modeling. Informa-

tion Theory, IEEE Transactions on, 44(6):2743–2760, 1998.

[4] Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jurij

Leskovec, and Christos Faloutsos. Epidemic thresholds in real

networks. ACM Transactions on Information and System Se-

curity (TISSEC), 10(4):1, 2008.

[5] Hau Chan, Leman Akoglu, and Hanghang Tong. Make it or

break it: Manipulating robustness in large networks.

[6] Fan RK Chung. Spectral graph theory, volume 92. American

Mathematical Soc., 1997.

[7] Jure Ferlez, Christos Faloutsos, Jure Leskovec, Dunja

Mladenic, and Marko Grobelnik. Monitoring network evolu-

tion using mdl. In Data Engineering, 2008. ICDE 2008. IEEE

24th International Conference on, pages 1328–1330. IEEE,

2008.

[8] H. Frank and I. Frisch. Analysis and Design of Survivable

Networks. Communication Technology, IEEE Transactions

on, 18(5):501–519, October 1970.

[9] Ayalvadi Ganesh, Laurent Massoulié, and Don Towsley. The

effect of network topology on the spread of epidemics. In

INFOCOM 2005. 24th Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE,

volume 2, pages 1455–1466. IEEE, 2005.

[10] Frank Harary and Allen Schwenk. The spectral approach to

determining the number of walks in a graph. Pacific Journal

of Mathematics, 80(2):443–449, 1979.

[11] Tsuyoshi Idé and Hisashi Kashima. Eigenspace-based

anomaly detection in computer systems. In Proceedings of

the tenth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 440–449. ACM, 2004.

[12] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos.

Graphs over time: densification laws, shrinking diameters and

possible explanations. In Proceedings of the eleventh ACM

SIGKDD international conference on Knowledge discovery in

data mining, pages 177–187. ACM, 2005.

[13] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph

evolution: Densification and shrinking diameters. ACM

Transactions on Knowledge Discovery from Data (TKDD),

1(1):2, 2007.

[14] Fragkiskos D Malliaros, Vasileios Megalooikonomou, and

Christos Faloutsos. Fast robustness estimation in large social

graphs: Communities and anomaly detection. In SDM,

volume 12, pages 942–953. SIAM, 2012.

[15] Mark EJ Newman. The mathematics of networks.

[16] Mark EJ Newman. Finding community structure in net-

works using the eigenvectors of matrices. Physical review E,

74(3):036104, 2006.

[17] Mark EJ Newman. Modularity and community structure in

networks. Proceedings of the National Academy of Sciences,

103(23):8577–8582, 2006.

[18] Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and

Thomas S Huang. Incremental spectral clustering by ef-

ficiently updating the eigen-system. Pattern Recognition,

43(1):113–127, 2010.

[19] University of Oregon Route View Project. Online data and

reports. http://www.routeviews.org.

[20] B Aditya Prakash, Deepayan Chakrabarti, Nicholas C Valler,

Michalis Faloutsos, and Christos Faloutsos. Threshold con-

ditions for arbitrary cascade models on arbitrary networks.

Knowledge and information systems, 33(3):549–575, 2012.

[21] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri,

Sridhar Machiraju, and Christos Faloutsos. Eigenspokes: Sur-

prising patterns and scalable community chipping in large

graphs. In Advances in Knowledge Discovery and Data Min-

ing, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad,

India, June 21-24, 2010. Proceedings. Part II, pages 435–448,

2010.

[22] G. W. Stewart and Ji-Guang Sun. Matrix Perturbation The-

ory. Academic Press, 1990.

[23] Hanghang Tong, Spiros Papadimitriou, Philip S Yu, and

Christos Faloutsos. Fast monitoring proximity and centrality

on time-evolving bipartite graphs. Statistical Analysis and

Data Mining, 1(3):142–156, 2008.

[24] Hanghang Tong, B Aditya Prakash, Tina Eliassi-Rad,

Michalis Faloutsos, and Christos Faloutsos. Gelling, and

melting, large graphs by edge manipulation. In Proceedings

of the 21st ACM international conference on Information and

knowledge management, pages 245–254. ACM, 2012.

[25] Hanghang Tong, B Aditya Prakash, Charalampos

Tsourakakis, Tina Eliassi-Rad, Christos Faloutsos, and

Duen Horng Chau. On the vulnerability of large graphs.

In Data Mining (ICDM), 2010 IEEE 10th International

Conference on, pages 1091–1096. IEEE, 2010.

[26] Charalampos E Tsourakakis. Fast counting of triangles in

large real networks without counting: Algorithms and laws.

In Data Mining, 2008. ICDM’08. Eighth IEEE International

Conference on, pages 608–617. IEEE, 2008.

[27] Charalampos E Tsourakakis. Counting triangles in real-world

networks using projections. Knowledge and Information

Systems, 26(3):501–520, 2011.

[28] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Chris-

tos Faloutsos. Epidemic spreading in real networks: An

eigenvalue viewpoint. In Reliable Distributed Systems, 2003.

Proceedings. 22nd International Symposium on, pages 25–34.

IEEE, 2003.

[29] Stanley Wasserman. Social network analysis: Methods and

applications, volume 8. Cambridge university press, 1994.

[30] V Vassilevska Williams. Breaking the coppersmith-winograd

barrier.

[31] Jun Wu, Barahona Mauricio, Yue-Jin Tan, and Hong-Zhong

Deng. Natural connectivity of complex networks. Chinese

Physics Letters, 27(7):78902, 2010.

567 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

5/
16

 to
 1

49
.1

69
.1

15
.3

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

