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Activity Recognition with Smartphone Sensors
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Abstract: The ubiquity of smartphones together with their ever-growing computing, networking, and sensing powers

have been changing the landscape of people’s daily life. Among others, activity recoginition, which takes the raw

sensor reading as inputs and predicts a user’s motion activity, has become an active research area in recent years.

It is the core building block in many high-impact applications, ranging from health and fitness monitoring, personal

biometric signature, urban computing, assistive technology, and elder-care, to indoor localization and navigation,

etc. This paper presents a comprehensive survey of the recent advances in activity recognition with smartphones’

sensors. We start with the basic concepts such as sensors, activity types, etc. We review the core data mining

techniques behind the main stream activity recognition algorithms, analyze their major challenges, and introduce a

variety of real applications enabled by activity recognition.

Key words: activity recognition; mobile sensors; machine learning; data mining; pattern recognition

1 Introduction

Smartphones are ubiquitous and becoming more and
more sophisticated, with ever-growing computing,
networking, and sensing powers. This has been
changing the landscape of people’s daily life and
has opened the doors for many interesting data
mining applications, ranging from health and fitness
monitoring, personal biometric signature, urban
computing, assistive technology, and elder-care, to
indoor localization and navigation, etc.

Human activity recognition is a core building block
behind these applications. It takes the raw senor reading
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as inputs and predicts a user’s motion activity. Many
main stream smartphones are equipped with various
sensors, including accelerometers, GPS, light sensors,
temperature sensors, gyroscope, barometer, etc. These
sensors have become a rich data source to measure
various aspects of a user’s daily life. The typical
activities include walking, jogging, sitting, etc. Due
to its unobtrusiveness, low/none installation cost,
and easy-to-use, smartphones are becoming the main
platform for human activity recognition. Figure 1
shows a typical process for activity recognition with
smartphone sensors.

Activity recognition is important in many real
applications. Let us elaborate this using the following
examples. To begin with, as one branch of human-
computer interaction, it makes the computer even
“smarter”, that is, it could provide the corresponding
services based on what the user is doing. For example,
suppose that the phone detects that the user is about
to leave the room and its weather application indicates
that it will rain later, a reminder will pop up with
a message “Bring an umbrella. It is going to rain
with a high probability”. Another important application
of activity recognition techniques is in both indoor
and outdoor localizations for building navigation or
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Fig. 1 Activity recognition process.

augmenting the precision of context-aware services[1, 2].
Finally, as smartphones become as essential as keys
and the wallet for a user’s pocket stuff nowadays, the
activity recognition techniques could help in assisting
life in healthcare. It could help in the prevention
of dangerous activities, such as elder people’s fall
detection[3], youth Autism Spectrum Disorder (ASD)
detection in a classroom, etc. It could also help in a
proactive way. For example, in order to help the user
form a healthy fitness habit, the smartphone can send
a reminder if it detects that she/he has been sitting
too long. Several recent popular fitness trackers such
as Fitbit One[4] are built upon wearable sensors and
activity recognition techniques. They track people’s
steps taken, stairs climbed, calorie burned, hours slept,
distance travelled, quality of sleep, etc.

There are several survey works on activity
recognition using mobile sensors and related topics
such as Refs. [5-8]. Reference [5] summarizes the
application and process of activity recognition using
inertial sensors in the healthcare and wellbeing
fields. Reference [6] describes and categorizes the
activity recognition based applications. References
[7, 8] are the most recent ones that both contribute
on taxonomy in activity recognition. Survey work on
smartphone related sensing and applications can be
found in Refs. [9,10]. In this paper we aim to summarize
the recent advances of activity recognition with mobile
sensors so that (1) for those who have no background in
this area they could obtain a comprehensive review on
how the experiment is conducted and how the problem
is tackled; and (2) for those who work on similar
research topics we provide a summary of the technical
challenges and corresponding solutions in literatures,
as well as the latest applications.

2 Background

An activity recognition application takes the raw
sensor reading as inputs and predicts a user’s motion
activity. Before we dive into the algorithmic details in

the next section, let us review these basic concepts in
this section.

2.1 Inputs: Sensors

Sensors are the source for raw data collection in
activity recognition. We classify sensors into three
categories: video sensors, environmental-based sensors,
and wearable sensors. Video sensors are basically
cameras that are installed in the fixed places such as
the entrance/exit of the public places (to detect people’s
appearance and actions), or in the living rooms or
bedrooms[11] (to track the users’ daily life). Cameras
are also embedded in robots for a more active visual
data capture. Visual monitoring for activity recognition
is used in many applications such as surveillance,
anti-terrorists, and anti-crime securities as well as life
logging and assistance.

Environmental-based sensors are used to detect the
users’ interaction with the environment. They are radio-
based sensors like WiFi, Bluetooth, and the infrared
sensors. These sensors are usually deployed in indoor
places such as office buildings or homes. They passively
monitor the appearance of users at a certain location, or
the users’ interaction with objects that are also equipped
with sensors. Their limitations are that (1) they can only
be applied to certain fixed locations, and (2) the cost for
the full deployment of such sensors is often very high.

Wearable sensors are the mobile sensors that are in
small size and designed to be worn on human body in
daily activities. They can record users’ physiological
states such as location changes, moving directions,
speed, etc. Such sensors include accelerometers,
microphones, GPS, barometers, etc. Most of the
mobile sensors are equipped on smartphones. Table 1
summarizes a set of sensors that are provided in current
mainstream smartphones. Please refer to the Android
document for a detailed description of all the supported
sensors and their interface definitions on Android
smartphones in Ref. [12]. Next, we will introduce
several important sensors that are commonly used in
the mobile activity recognition applications. Compared
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Table 1 A set of mobile phone sensors.
Sensor Description

Accelerometer Measure the acceleration force that applied to the device, including force of gravity
Ambient temperature sensor Measure the ambient room temperature
Gravity sensor Measure the force of the gravity that applied to the device, in three axes (x; y; z)
Gyroscope Measure the device’s rotation in three axes (x; y; z)
Light sensor Measure the ambient light level (illumination)
Linear acceleration Measure the acceleration force that applied to the device, force of gravity is excluded
Magnetometer Measure the ambient geomagnetic field in three axes (x; y; z)
Barometer Measure the ambient air pressure
Proximity sensor Measure the proximity of an object relative to the view screen of a device.
Humidity sensor Measure the humidity of ambient environment
Gyroscope Measure the orientation of a device in pitch, roll and yaw.

with sensors like light sensors and proximity sensors,
these sensors’ reading reveals the actual motion
status and their features are more related to activity
recognition.

2.1.1 Accelerometer
Accelerometer sensors sense the acceleration event of
smartphones. The reading includes three axes whose
directions are predefined as in Fig. 2. The raw data
stream from the accelerometer is the acceleration of
each axis in the units of g-force. The raw data is
represented in a set of vectors: Acci D< xi ; yi ; zi >;

.i D 1; 2; 3; � � � /. A time stamp can also be returned
together with the three axes readings. Most of existing
accelerometers provide a user interface to configure the
sampling frequency so that the user could choose a best
sampling rate through experiments.

Accelerometer has been used heavily in smartphone
sensors based activity recognition. Its popularity is

Fig. 2 Accelerometer axes on smartphones[13].

due to the fact that it directly measures the subject’s
physiology motion status. For example, if a user
changes his/her activity from walking to jogging, it will
reflect on the signal shape of the acceleration reading
along the vertical axis — there will be an abrupt change
in the amplitude. Moreover, the acceleration data could
indicate the motion pattern within a given time period,
which is helpful in the complex activity recognition.

2.1.2 Compass sensor
Compass is a traditional tool to detect the direction
with respect to the north-south pole of the earth by the
use of magnetism. The compass sensor on smartphones
works with a similar functionality. Figure 3 shows the
compass reading display screen on a smartphone. The
raw data reading from a compass sensor is the float
number between 0ı and 360ı. It begins from 0ı as the
absolute north and the actual reading indicates the angle
between current smartphone heading direction and the

Fig. 3 Compass sensor on smartphones.
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absolute north in clockwise. For example, the reading of
heading to absolute East is 90ı and heading to absolute
West is 270ı. The data stream returned from compass
sensors is a set of floating numbers indicating the angel,
compi ; .i D 1; 2; 3; � � � ; 0ı 6 compi 6 360ı). Compass
reading can be used to detect the direction change in
the user’s motion such as walking.

2.1.3 Gyroscope
Gyroscope measures the phone’s rotation rate by
detecting the roll, pitch, and yaw motions of the
smartphones along the x, y, and z axis, respectively.
The axes directions are shown in Fig. 4. The raw
data stream from a gyroscope sensor is the rate of the
rotation in rad/s (radian per second) around each of
the three physical axes: Rotationi D<xi ; yi ; zi >; .i D

1; 2; 3; � � � /. Gyroscope is helpful in the navigation
applications as well as some smartphone games which
use the rotation data. In activity recognition research,
gyroscope is used to assist the mobile orientation
detection.

2.1.4 Barometer
Barometer is one of the latest sensors equipped on
some advanced smartphones (e.g., Samsung Galaxy S4
and Google Nexus 4/10). It measures the atmospheric
pressure of the environment that the sensor is placed
in. The air pressure varies with different altitude or

Fig. 4 Three axes of gyroscope on smartphones.

even with places of the same altitude but having
different structures (e.g., narrow and wide hallways)
inside a building. Thus, barometer reading can be used
to indicate the user’s position change in localization
related activity recognition[14].

2.2 Outputs: Activities

Activities recognized by the sensor’s data can be
classified in different ways. For example, they can be
classified in terms of the complexity of activities. A
simple locomotion could be walking, jogging, walking
downstairs, taking elevator, etc. The complex activities
are usually related to a combination of a longer period
of activities (e.g., taking bus and driving). The activities
may only correspond to the movements of certain parts
of the body (e.g., typing and waving hand). There
are several healthcare related activities, such as
falling, exercise, rehabilitations, etc. Location-based
activities include dining, shopping, watching movies,
etc. Vision-based activities include leaving or entering
a place. Activities detected by an infrared sensor could
be a user moving or being still, and the activities
recognized by a home assisting robot could be sleeping,
taking pills, or doing cleaning. The latest versions of
Android and iOS both provide an API to detect a
user’s current activity in one of the four activities:
Walking, Stationary, Running, and Automotive. Table
2 summarizes the different categories of activities in
the current literatures. Different ways to categorize
activities could also be found in Refs. [5, 7].

3 Core Techniques

In this section, we review the core data mining
techniques for activity recognition, including raw data
collection, data pre-processing, feature computation,
model training, and classification. Accordingly, these
are the main steps in the activity recognition process.

3.1 Raw data collection

The way to collect the raw data will directly impact

Table 2 Type of activities.
Category Activity type

Simple activities Walking, Jogging, Sitting, Standing, Lying, Walking upstairs, Walking downstairs, Jumping
Taking escalator up, Taking escalator down, Taking elevator up, Taking elevator down

Complex activities Shopping, Taking buses, Moving by walking, Driving a car
Living activities Brushing teeth, Vacuuming, Typing, Eating, Cooking, Washing hand, Meditation, Clapping

Watering plants, Sweeping, Shaving, Dry blowing the hair, Washing dishes, Ironing, Flushing the toilet
Working activities Working, Relaxing, Cleaning, On a break, Meeting, Home talking, Home entertaining
Health activities Exercising, Fall, Rehabilitation activities, Following routines
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the accuracy in the recognition period, as well as
the adaptivity of the classification models. According
to Refs. [15, 16], the recognition model trained from
one subject’s data has a lower accuracy in recognizing
another subject’s activities, and the sensor position
and orientation on the body, if different from how
the model is trained, will decrease the accuracy. The
number of sensors and the variety of sensors also
impact the recognition results[17], so does the location
where the activity is taken. In Table 3 we summarize
the experiment settings in terms of sensors and subjects
in the majority of the literatures in activity recognition
using mobile sensors.

There are various experiment settings to minimize
the effect of the location sensitivity and the identity
sensitivity. For example, in Ref. [17], multiple
sensors are used to remove the gravity effect on the
accelerometer readings and convert the accelerometer
reading from the body coordinate system to the earth
coordinate system. By doing so, the trained model
becomes sensors-orientation-independent. In Ref. [15],
the authors experimented to collect the data from
different users and put sensors on the different body
parts of subjects. They concluded that with a larger
training set obtained under different settings, the
location and identity sensitivity could be alleviated.

Another subtle issue in raw data collection is
the sampling rate. Almost any sensors provide
APIs to allow the user to configure the sampling

rate. Although data collected at a higher rate provides
more information of the user, it may also introduce
more noise. Therefore, a higher sampling rate does not
always lead to a higher accuracy.

3.2 Preprocessing: De-noising and segmentation

After collecting the raw data from different sensors,
the next step is to preprocess it before performing
any further calculation. One purpose of the data
preprocessing is to reduce the noise from the users
and the sensors themselves. References [23, 30] use
an average smoothing method. They replace each raw
data by its average with the two adjacent data points to
reduce the noise like a sudden spike that may be caused
by cellphone’s accidentally falling to the ground. In
Ref. [3], two filters are used for data preprocessing. The
band-pass filter is used to eliminate the low-frequency
acceleration (gravity) that captures the information
about the orientation of the sensor with respect to the
ground data, and the high-frequency signal components
generated by noise. Thus it preserves the medium-
frequency signal components generated by dynamic
human motion. The low-pass filter aims to eliminate the
noise generated by the dynamic human motion and to
preserve the low-frequency components.

Another important preprocessing step is data
segmentation, which is to divide the (preprocessed)
continuous data streaming into small segments for
feature extraction and model training. The segmentation

Table 3 Experiment setting for data collection in the literatures.

Element Setting Papers

Subjects
Single subject [18]
Multi subjects [16, 19-22]

Sensor
amount

Single sensor
(Accelerometer)

Single accelerometer [19-26]
Multiple accelerometers [16]

Multi modality

Accelerometer, Gyroscope, Magnetometer [17, 27]
Accelerometer, Microphone, Magnetometer, Compass, Barometer, Light sensors [15]
Accelerometer, RFID Radar [28]
Accelerometer, GPS [2]
Accelerometer, Bluetooth [1, 29]

Sensor
location

On the back [23]
Multi locations such ase Knee, Waste, Wrist, Ankle, Elbow, Shoulder, Chest [3, 15, 16, 28]
Grasp with hand (holding) [18, 21, 24]
Pelvic area [19]
Belt [30]
Pants pocket [20]
Waist [31]

Location
of activity

Single location [1, 2, 32]
Multiple locations [15, 22]
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can be classified into two categories: (a) segmentation
with overlapping, and (b) segmentation without
overlapping. The fixed-size no-data-overlapping
window segmentation method is commonly used
in most activity recognition systems. It reduces the
computation complexity of segmentation and hence is a
good approach when data is continuously retrieved over
time. However, the selection of the window size might
have a big impact on the final recognition accuracy. In
Ref. [28], the authors conducted experiments to
estimate the recognition performance with each
algorithm based on different window sizes. The result
shows that for each algorithm they test, the accuracy
decreases as the window size increases. Another no-
data-overlapping window solution is to use a dynamic
window size. In this method, its window size depends
on the actual time when all the active sensors are
triggered. This method is good for multi-modality
sensors’ data. However, it imposes the same weight on
different sensors, which may be sub-optimal. Another
method is to use the sliding window with data
overlapping, i.e., 10 timeticks of data overlapping
between two segments in adjacent windows. The
sliding window with overlapping is helpful when there
are transitions between different activities. By applying
the segmentation with data overlapping, it reduces the
error caused by transition state noise[3, 19].

3.3 Feature computation

As in any other data mining tasks, extracting the
“right” features is critical to the final recognition
performance. For activity recognition, we can extract
features in both time and frequency domains.

3.3.1 Time-domain features
Time-domain features contain the basic statistics of
each data segment and those of different segments.
� Mean. The mean value of each segment in each

dimension.
� Max, Min. The maximum and minimum values of

each segment in each dimension.
� Standard deviation, Variance. The variance (and

standard deviation) of each segment.
� Correlation. Correlation is calculated between

each pair of axes of the acceleration data.
� Signal-Magnitude Area (SMA). SMA is

calculated as the sum of the magnitude
of the three axes acceleration within the
segment window[23]. Besides SMA, there exist
similar features to combine the three axes

readings. Average Resultant Acceleration is the
average of the square root of the sum of the
values of each axis. Another similar feature is the
deviation of the sum of the square of acceleration
along three axes[33]. The square root of the sum of
the acceleration is used as the movement intensity
feature in Ref. [30].

3.3.2 Frequency-domain features
Frequency-domain features describe the periodicity of
the signal, which are typically calculated based on the
FFT.
� Energy. The energy feature is calculated as the

sum of the squared discrete FFT component
magnitudes. Ravi et al.[19] used the normalized
energy divided by the window length.
� Entropy. The entropy feature is calculated as the

normalized information entropy of the discrete
FFT components, and it helps in discriminating the
activities with the similar energy features[16].
� Time between peak. This feature is the time

between the peaks in the sinusoidal waves[32].
� Binned distribution. This feature is essentially the

historgram of the FFT and it is calculated as
follows[32]. First, determine the range of values for
each axis (e.g., maximum and minimum). Then,
divide this range into 10 equal sized bins, and
calculate the fraction of the values falling within
each of the bins.

3.4 Classification

From data mining perspective, activity recognition is
a multi-class classification problem. Many existing
classifiers can be plugged in. In this subsection, we
review those popular classifiers which have been used
in the literatures of activity recognition.

3.4.1 Base-level classifiers
Base-level classifiers have been widely used in activity
recognition.

Decision tree. Due to its low complexity in
implementation and excellent interpretation, decision
tree is adopted as the main classifier in many activity
recognition researches. Reference [34] uses decision
tree to build the hierarchical classification model for
background sound analysis. Reference [35] adopts
decision tree as the classifier in the two-stage activity
recognition process. They first classify the activity into
two categories: active (e.g., walking, running, and
cycling) and inactive (e.g., driving and idling); then
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each activity is further classified within the first level
category. Reference [36] generates a lightweight and
efficient tree model. Carós et al.[37] presented a binary
decision tree to discriminate between standing/sitting
and lying by using data collected from an accelerometer
located on the body thorax.

Weka Toolkit[38] is a machine learning toolbox with
many existing algorithms. It is commonly used as an
off-line training tool in activity recognition. One of
decision tree algorithms C4.5[39] is implemented with
Java and is named as J48 in Weka. J48 is used by
many activity recognition researches as an off-line
classification model. A comparative study of classifiers,
including J48, can be found in Refs. [30, 32, 40,
41]. Martı́n et al.[41] found that J48 outperforms both
Decision Tables and Naive Bayes Classifier in their
activity logging system.

The disadvantage of decision tree lies in model
updating. Once the decision tree model is built, it might
be costly to update the model to accommodate the new
training examples. Thus, in the online learning settings,
decision tree is not a popular classifier for activity
recognition.

Decision table. Decision table is a table of rules and
classes. Given an unlabelled example, it searches for
the exact match in the table and returns the majority
class label among all matching instances, or reports no
matching is found[42]. Bao and Intille[16] and Ravi et
al.[19] tested different classifiers including decision table
in daily activity recognition. Compared with decision
tree, decision table is easy to program and maintain
because of its straight-forward structure. However,
unlike decision tree, decision table does not have
a hierarchical structure. In the context of activity
recognition, the activities are sometimes classified
with a hierarchy. For example, an activity can
be first classified into still vs. moving, and then
within each category, a more detailed category is
generated. Decision table is not able to capture such a
hierarchy.

KNN. KNN is an instance-based classifier based
on the majority voting of its neighbours[43]. In
general, KNN is one of the most popular algorithms
for pattern recognition[24] and is par with Decision
Tree in terms of performance and the computational
complexity. In Ref. [44], Lombriser et al. developed a
dynamic sensor network combining KNN and decision
tree algorithm for activity recognition. According to
their test, KNN and J48/C4.5 are identified as “the

classifiers with the least complexity but rendering
acceptable performance”. In a comparative study[40],
Maguire and Frisby compared the performance between
KNN and J48/C4.5 using Weka Toolkit for activity
recognition. By using 10-fold cross validation in
different experiment settings, they found that KNN
achieves a better overall accuracy. Reference [17] uses
KNN as the classifier in the user and device orientation
independent activity recognition. In Ref. [24], Kaghyan
and Sarukhanyan adopted KNN in the desktop
application of activity recognition using acceleration
data recorded by smartphones. They observed that
the choice of a good training set is the key factor
in the recognition accuracy. Kose et al.[45] developed
Clustered KNN for their online activity recognition
system.

HMM. Using HMM to recognize activities has its
unique advantage in capturing the transition among
different types of activities[15]. In Ref. [18], Lee and
Cho proposed a two-layered smartphone application
to recognize the users’ activities and actions based on
the hierarchical HMMs. Zappi et al.[46] proposed a
manipulative activity recognition system for assemble
line workers. Multiple accelerometers are equipped
on different parts of the body and for each sensor’s
data one HMM model is trained. Then by competing
the accuracy of different HMMs, the system would
dynamically choose the sensor that achieves the highest
accuracy. In Ref. [47], Oliver and Horvitz conducted a
comparative analysis of a layered architecture of HMM
and Dynamic Bayesian networks for identifying human
activities from multi-modal sensor information.

SVM. SVM is a maximum margin classifier. Anguita
et al.[31] proposed a hardware-friendly multi-class SVM
for a smartphone activity recognition application that is
used in healthcare. By using the fixed-point algorithm,
its computational cost is reduced to be comparable to a
traditional SVM.

Other classification methods used in activity
recognition with mobile sensors include Gaussian
Mixture Models[48, 49], Artificial Neural Networks
(ANN)[50-52], Naive Bayes (NB)[53], Rule-Based
classifier[54], and a fuzzy inference system[55].

3.4.2 Meta-level classifiers
Ravi et al.[19] clustered meta-level classifiers into
three categories: voting (using bagging or boosting),
stacking, and cascading. In voting, each base-level
classifier gives a vote for its prediction. The class
label receiving the most votes is the final decision. In
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stacking, a learning algorithm is used to learn how to
combine the predictions of the base-level classifiers. In
cascading, a multi-stage mechanism is used based
on several classifiers. The output from a given
classifier is collected as additional information for the
next classifier. Cascading generally gives sub-optional
results compared to the other two schemes[19].

In Ref. [19], Ravi et al. conducted a comparative
study in terms of classifying eight activities. They
evaluated an exhaustive set of classifiers: Boosting,
Bagging, Plurality voting, Stacking with Ordinary-
Decision Trees (ODTs)[56], and Stacking with
Meta-Decision tress (MDT)[56]. All the base-level
classifiers (e.g., NB, SVM, KNN, Decision Tree,
and Decision Table) and all the meta-level classifiers
mentioned above were evaluated with four different
experiment settings. The Plurality Voting classifier
outperforms other classifiers in most cases and hence
is recommended as the best classifier for activity
recognition from a single accelerometer. One of the
meta-level voting classifier, Bag-of-Features (BoF),
is used in Ref. [57]. Authors used BoF to build
activity recognition models using histograms of
primitive symbols, and then validated experimentally
the effectiveness of the BoF-based framework for
recognizing nine activity classes. Their framework is
adopted in Ref. [30] for a long-term activity recognition
system based on accelerometer data.

Meta-level classifiers can also be used in feature
selection. A modified version of AdaBoost proposed in
Ref. [58] is used for feature selection in Ref. [15]. Given
the maximum number of features that the activity
recognition system aims to use, it automatically chooses
the most discriminative sub-set of features and uses
them to learn an ensemble of discriminative static
classifiers for activity recognition.

Another boosting algorithm based on the AdaBoost
is introduced by Reiss in Ref. [59]. By using the
information on how confident the weak learners are to
estimate the class of instances, the algorithm allows
the voting weights of the weak learners to vary in
response (decrease or increase in the weight) to the
confidence. Thus the new instance is classified based
on weighted voting.

4 Challenges

Although the research on activity recognition is
beneficial from the mobile sensors’ unobtrusiveness,

flexibility, and many other advances, it also faces
challenges that are brought by them. In this section,
we review the major, common challenges for
activity recognition using mobile sensors, and the
corresponding solutions to alleviate them in the current
literature.

4.1 Subject sensitivity

The accuracy of activity recognition, especially those
based on the accelerometer data, is heavily affected
by the subjects participated in training and testing
stages. This is mainly due to the fact that different
people have different motion patterns. Even for the
same subject, she/he may have different patterns
at different time. In Ref. [19], the comparative
experiments show that training and testing on the same
subject achieves the highest accuracy. Training and
testing on the same group of multiple subjects has the
second highest accuracy. The accuracy decreases when
the test data is collected from same subject but on
different days. The lowest accuracy is in the setting
where the training data is collected from one subject on
one day and testing is conducted on another subject on
a different day. Reference [17] reports a high accuracy
in user dependency test based on an activity recognition
system using 20 subjects’ data.

Various solutions have been discussed to address the
subject sensitivity. Lester et al.[15] suggested collecting
the activities over longer periods of time and of people
with different ages and body types. A recognition
model trained on such a diversified dataset works
more reliably when it is tested on data from new
individuals. Deng et al.[60] proposed a cross-person
activity recognition model to eliminate the effect of
user sensitivity. The model training stage consists of
two parts: The initial model is trained off-line and
the adaptive model is updated online. For new users
in the online phase, the algorithm selects those high
confident recognition results in order to generate the
new training dataset. Based on this new training dataset,
the algorithm will update the recognition model to
alleviate the subject sensitivity.

4.2 Location sensitivity

Due to the property of accelerometer both in wearable
sensors and smartphones, its raw reading heavily
depends on the sensors’ orientation and positions on the
subject’s body. For example, when a user is walking
while holding a phone in his/her hand, the moving data
reading is quite different from the data reading if the
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phone is in his/her pocket.
One solution is proposed in Ref. [17] to address

the orientation sensitivity by using another sensor:
magnetometer. The magnetic field sensor provides
the magnetic vector along three axes of the device’s
coordinate system in the orthogonal directions. Hence,
it could be utilized to derive the devices’ azimuth
angle. Then the accelerometer reading can be converted
to the earth coordinating axes reading. Park et al.[61]

presented a device pose classification method based on
the regularized kernel algorithm. It provides a way of
how to estimate the smartphone’s pose before doing any
motion data analysis.

4.3 Activity complexity

The complexity of user activities also brings an
additional challenge to the recognition model. For
example, the motion during transition period
between two activities is difficult for the underlying
classification algorithm to recognize. People
performing multiple tasks at the same time might
also confuse the classifier which is trained under one-
activity-per-segment assumption. In addition, culture
and individual difference might result in the variation
in the way that people perform tasks[5], which in turn
brings the difficulty in applying the activity recognition
models globally.

HMM is a natural solution to address the activity
complexity by “smoothing” the error during the activity
transition period[15]. Different classifiers and rule-based
strategies are used for different activity recognitions
in Ref. [3]. In Ref. [62], the transition states (such
as Sit-Stand, Sit-Lie, Walk-Stand, etc.) are treated as
additional states, and the recognition model is trained
with respect to these states too.

4.4 Energy and resource constrains

Activity recognition applications require continuous
sensing as well as online updating for the classification
model, both of which are energy consuming. For
the online updating, it might also require significant
computing resources (e.g., mobile phone memories).

Yan et al.[63] introduced an activity-sensitive
strategy, i.e., the Adaptive Accelerometer-based
Activity Recognition (A3R) strategy. Based on the
observation that the required sampling frequency
differs for different activities, A3R adaptively
makes the choices on both sampling frequency
and classification features. In this way, it reduces
both energy and computing resource cost. Liang et

al.[64] designed the activity recognition algorithm
with a lower sampling frequency. It also removes the
time-consuming frequency-domain feature calculation.

4.5 Insufficient training set

As mentioned in the subject sensitivity challenge part,
it is highly desirable that the training data must contain
as many varieties of the subjects as possible. However,
it is not easy to coordinate people of different ages
and body shapes to collect data under a controlled
lab environment, not to mention the varieties of the
environment itself.

Semi-supervised learning is applied to address this
issue. In many classification tasks, the unlabelled data,
when used in conjunction with a small amount of
labelled data, can produce considerable improvement
in learning accuracy. For activity recognition, the
collection of unlabelled data is easy and requires
near zero users’ effort. In Ref. [65], Guan et al.
extended the co-training method[66] by ensemble
and proposed the en-co-learning method. Instead
of using two different labelled datasets for the
initial training, the en-co-learning semi-supervised
learning method uses only one labelled dataset
and three different classifiers. In this way, it
bypasses the time consuming confidence calculation
and eliminates one labelled dataset. Mahaviani and
Choudhury[67] presented an efficient semi-supervised
learning for parameter estimation and feature selection
in Conditional Random Fields (CRFs) in activity
recognition. By combining semi-supervised learning
with virtual evidence boosting (EVB) method, it
reduces the human labelling cost as well as improves
the efficiency for feature selection.

Besides the traditional semi-supervised learning
method, the scale-invariant classifier with “R” metric
(SIC-R) proposed by Xie and Beigi[68] could also be
applied to solve this issue. Based on the image process
method SIFT[69], SIC-R is designed to recognize multi-
scale events of human activities. The introduced feature
descriptor of time-scale invariance allows the feature
from one training set to describe events of the same
semantics class which may take place over varying time
scales. In this way, it reduces the demand on training
set.

5 Applications

Activity recognition is a core building block behind
many interesting applications. Lockhart et al.[6]
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classified the applications of mobile activity recognition
according to their targeted beneficial subjects: (1)
application for the end users such as fitness tracking,
health monitoring, fall detection, behaviour-based
context-awareness, home and work automation, and
self-managing system; (2) applications for the third
parties such as targeted advertising, research platforms
for the data collection, corporate management, and
accounting; and (3) applications for the crowds and
groups such as social networking and activity-based
crowd-sourcing. In this section, we review some
representative applications.

5.1 Daily life monitoring

Applications in daily life monitoring usually aim
to provide a convenient reference for the activity
logging or assisting in exercise and healthy life
styles. Recently, a very popular product is the Fitness
Stats Tracking gadget, such as Nike Feulband, Fitbit
One, Bodymedia, etc. These devices are equipped
with the embedded sensors such as accelerometer,
gyroscope, GPS; and they track people’s steps taken,
stairs climbed, calorie burned, hours slept, distance
travelled, quality of sleep, etc.[4] An online service
is provided for users to review data tracking and
visualization in reports. Compared with smartphone
sensors, these devices are more sophisticated, since
their sensors are designed specifically for the activity
detection and monitor. The drawback is that they are
much more expensive.

Smartphone applications with activity recognition
techniques have been shown up in recent years as an
alternative solution. These applications usually have
similar roles as above specialized devices. They track
users’ motion logs such as jogging route, steps taken,
and sleeping time. By mining the logged data, they
may offer the user a summary on his/her life style
and report the sleeping quality. Such applications
include ilearn[54], Personal Life Log (PLL) system[70],
the popular iphone application Nike + iPod[71],
myHealthAssistant[29], and sleepcycle[72]. Compared to
the devices mentioned above, these applications are
easier to use and less or zero cost because they are
installed on smartphones and do not need extra sensors
or devices.

5.2 Personal biometric signature

A subject’s motion pattern is usually exclusive and
unique. For example, when people raise their hands,

it is almost impossible for two people’s hands to share
the exactly same motion patterns. Even in a successful
imitation, the differences still exist because of the
difference in the motion related bones and muscles
on human bodies. Sensors such as accelerometers
can capture those differences. The activity recognition
techniques provide a possible solution for human
biometric signature with patterns in motion/gestures. In
these applications, pattern recognition methods are used
to obtain the unique motion patterns, which are in turn
saved in the database. It is convenient and feasible
because of the pervasive usage of mobile devices. The
biometric signature using mobile sensors is proposed in
Refs. [20, 21].

On the other side, the motion signature could also be
used in a malicious way. For example, people could
use the learned patterns to crack users’ behaviours,
such as smartphone keyboard typing, or other spying
activities. Such applications are discussed in Refs. [73,
74], where the user’s typing pattern is learned via
accelerometer reading and the learned patterns will be
used to infer the user’s typing on the screen.

5.3 Elderly and youth care

There is a growing need in elderly care (both physically
and mentally), partially because of the retirement of the
baby boomer generation. A major goal of the current
research in human activity monitoring is to develop new
technologies and applications for elderly care. Those
applications could help prevent harms, e.g., to detect
older people’s dangerous situations. In Ref. [3], an
architecture on the smartpphone is developed with the
purpose of users’ fall detection. Activity recognition
and monitor sensors could help elders in a proactive
way such as life routine reminder (e.g., taking
medicine), living activity monitoring for a remote
robotic assist[59]. Si et al.[75] proposed a prototype
system that provides elderly people the personalized
guidance to complete daily life activities by learning
their living patterns using mobile sensors.

The youth care is another field that benefits from
the activity recognition research. Applications include
monitoring infants’ sleeping status and predicting
their demands on food or other stuff. Activity
recognition techniques are also used in children’s
(ASD) detection. For example, Ref. [22] presents a
solution to use sensors to detect the stereotypical motor
movements on children with ASD in classrooms.
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5.4 Localization

Activity recognition on mobile phones could help
in context-awareness and hence can be applied in
localization. One reason to use mobile sensors rather
than GPS for localization is that GPS signal is usually
very weak inside buildings and underground. On the
other hand, the activity recognition techniques with
mobile sensors could assist in locating the position. In
addition, GPS localization is 2-D-based positioning
which has no information of a user’s altitude. Activity
recognition techniques on mobile phones could fill in
this gap. Song et al.[76] proposed a floor localization
system to find 9-1-1 caller in buildings by inferring
the current floor level using activity recognition
techniques. A similar system is proposed in Ref. [1]
for infrastructure-free floor localization. A third reason
to use mobile sensors for localization is that GPS
accuracy decreases inside cities with tall buildings
surrounded. In this situation, GPS-based localization
might confuse between a movie theatre and a restaurant,
which might be just too close to each other in
terms of the distance. Activity recognition related
applications can alleviate this kind of mistakes by
augmenting the positions with people’s current activity
type. Reference [2] proposes an application (AAMPL)
to help positioning the context based on the learned
activity signatures in certain environments.

5.5 Industry manufacturing assisting

The activity recognition techniques could also
assist workers in their daily work. One example is
Ref. [77]. This work (wearIT@Work) introduces
wearable sensors into work — “wearable computing”
is a kind of extension of the body that allows a worker
to perform “extraordinary tasks”[78]. Other applications
based on activity recognition include smart cameras
that can understand people’s gestures in film shooting
field, robot assistance in car production, etc.

6 Conclusions

Smartphones are ubiquitous and becoming more
and more sophisticated. This has been changing
the landscape of people’s daily life and has
opened the doors for many interesting data mining
applications. Human activity recognition is a core
building block behind these applications. It takes the
raw sensors’ reading as inputs and predicts a user’s
motion activity. This paper presents a comprehensive

survey of the recent advances in activity recognition
with smartphones sensors. We introduce the basic
concepts of activity recognition (such as sensors,
activity types, etc). We review the core data mining
techniques behind the main stream activity recognition
algorithms, analyze their major challenges, and
introduce a variety of real applications enabled by
activity recognition.

The activity recognition based on smartphone
sensors leads to many possible future research
directions. Besides the applications mentioned in
Section 5, an even novel way could be equipping
smartphones with intelligent applications to replace the
traditional devices such as remote control, traffic
controlling, and tracking devices. Smartphone
applications that can recognize users’ gestures
could send corresponding command to home
electronics. Thus, instead of keeping different remotes
in one’s cabinet, we can just install one application
that has the remote functions. The cross field research
could be developed in many fields because of the
mobile activity recognition techniques. For example,
scientists in diseases field could conduct experiment
with computer scientist based on the patients’ activities
records to infer the cause or pre-symptom of certain
disease like Alzheimer or stroke.
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