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ABSTRACT
Networks have been widely used to represent the relations between
objects such as academic networks and social networks, and learn-
ing embedding for networks has thus garnered plenty of research
attention. Self-supervised network representation learning aims at
extracting node embedding without external supervision. Recently,
maximizing the mutual information between the local node embed-
ding and the global summary (e.g. Deep Graph Infomax, or DGI for
short) has shown promising results onmany downstream tasks such
as node classification. However, there are two major limitations of
DGI. Firstly, DGI merely considers the extrinsic supervision signal
(i.e., the mutual information between node embedding and global
summary) while ignores the intrinsic signal (i.e., the mutual de-
pendence between node embedding and node attributes). Secondly,
nodes in a real-world network are usually connected by multiple
edges with different relations, while DGI does not fully explore the
various relations among nodes. To address the above-mentioned
problems, we propose a novel framework, called High-order Deep
Multiplex Infomax (HDMI), for learning node embedding on mul-
tiplex networks in a self-supervised way. To be more specific, we
first design a joint supervision signal containing both extrinsic and
intrinsic mutual information by high-order mutual information,
and we propose a High-order Deep Infomax (HDI) to optimize the
proposed supervision signal. Then we propose an attention based
fusion module to combine node embedding from different layers
of the multiplex network. Finally, we evaluate the proposed HDMI
on various downstream tasks such as unsupervised clustering and
supervised classification. The experimental results show that HDMI
achieves state-of-the-art performance on these tasks.
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1 INTRODUCTION
Network or graph structures have been widely used to represent
the relations among objects, such as the citation relation among
papers, the co-author relation among researchers, as well as the
friendship relation among people. Mining and discovering useful
knowledge from networks has been an active research area, within
which network representation learning has garnered substantial
research attention and it has been demonstrated to be effective for
various tasks on networks [6, 45, 48], such as node classification,
node clustering and link prediction.

Self-supervised network representation learning aims at extract-
ing node embedding without introducing external supervision sig-
nals. The dominant strategy of the self-supervised network rep-
resentation learning is to design a signal based on the proximity
of the nodes in the network, such that the node embedding will
retain the proximity. For example, given a node, DeepWalk [30] and
node2vec [9] maximize the probabilities of its neighbors sampled
by random walks. LINE [34] maximizes the probabilities between a
node and its first or second-order proximate neighbors. Albeit the
effectiveness of these methods, the proximity based supervision
signals only capture the local characteristic of networks. With the
introduction of the powerful network encoders, such as Graph Con-
volutional Network (GCN) [16] which can naturally capture such
local proximity based on graph convolution [3], the improvement
brought by the traditional proximity based supervision signals is
limited [37]. To further improve the quality of node embedding,
Deep Graph Infomax (DGI) [37] uses GCN as the network encoder
and trains it by maximizing the mutual information between the
node embedding and the global summary of the network. However,
there are two major limitations of DGI.

One limitation of DGI is that it focuses on the extrinsic super-
vision signal (i.e., whether the node embedding and the global
summary come from the same network), and it does not fully ex-
plore the intrinsic signal (i.e., the mutual dependence between the
embedding vector and the attribute vector of a node). Node at-
tributes themselves often contain discriminative information about
the nodes, and capturing the mutual dependence between them
helps the embedding obtain more discriminative information and
thus discover the potential relations among nodes. For example,
in the citation network, papers always contain textual attributes
such as abstracts and keywords. Two papers focusing on different
sub-areas (e.g. dynamic graph algorithms and sub-graph mining)

https://doi.org/10.1145/3442381.3449971
https://doi.org/10.1145/3442381.3449971


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Baoyu Jing, Chanyoung Park, and Hanghang Tong

might not have a direct citation relation, but they might share the
same or similar keywords (e.g. social network). In such a case, they
are likely to belong to the same area, e.g., social analysis or web
mining. The extrinsic signal only models the global property of the
citation network and ignores the intrinsic mutual dependence, and
thus it might be unable to discover the hidden relation between
the two papers. The existing dominant strategy for capturing the
mutual dependence between embedding and attributes is using
reconstruction error of attributes given node embedding [8, 24, 46].
However, as pointed out by [41], there is no substantial connection
between the discriminative ability (or quality) of embedding with
the reconstruction loss. In this paper, we propose to use mutual
information between node embedding and node attributes as the
intrinsic supervision signal. Moreover, to further capture the syn-
ergy between the extrinsic and the intrinsic signals, we propose
to use high-order mutual information among the node embedding,
global summary vector, and node attributes, and we propose a novel
High-order Deep Infomax (HDI) to maximize the high-order mutual
information.

Another limitation of DGI is that it assumes a single type of
relation among the nodes in a network, but nodes in a network are
usually connected via multiple edges with different relation types.
For example, in an academic network, two papers can be connected
via shared authors or citation relation. In a product network, prod-
ucts can be linked by relations such as AlsoView, AlsoBought, and
BoughtTogether. In a social network, two people can be connected
by many relations such as direct friendship, the same school, and
the same employer. A network with multiple types of relations is
referred to as a multiplex network, and a multiplex network can be
decomposed into multiple layers of networks, where each layer only
has one type of relation. Figure 1 provides an example of a multiplex
network. The simplest way to learn node embedding for a multi-
plex network is to first extract node embedding independently from
different layers and then use average pooling over the node embed-
ding from different layers to obtain final embedding for each node.
However, as observed by many recent studies [4, 28, 33, 39, 44],
layers are related with each other and they can mutually help each
other for downstream tasks. For example, in the academic multi-
plex network mentioned above, the citation network layer and the
shared author network layer usually provide different aspects of the
papers’ subject. To be more specific, the citation layer usually links
a paper (e.g. about the attributed network) with related papers from
other areas (e.g. computer vision), while a specific author usually
focuses on a specific area (e.g. network representation learning).
To capture such a mutual relation, the attention mechanism [1] is
mostly adopted to calculate the weights for different layers [31, 39].
However, these methods require external supervision (e.g. labels
of nodes) to train the attention module. Recently, DMGI [28] pro-
poses a complex combination module, which first uses an attention
mechanism to obtain reference node embedding and then uses a
consensus regularization to obtain final node embedding. In this
paper, we propose an alternative semantic attention [43] based
method as the fusion module to combine node embedding from
different layers. More importantly, different from existing works,
the proposed fusion module is trained via the proposed high-order
mutual information.

Figure 1: An example of the multiplex network, where dif-
ferent colors represent different types of relations among
nodes. A multiplex network contains multiple layers of net-
works, where each layer has one type of relations.

Our main contributions are summarized as follows:
• We propose a novel supervision signal based on the high-
order mutual information, which combines extrinsic and
intrinsic mutual information, for learning network embed-
ding on both attributed networks and attributed multiplex
networks.

• We introduce a novel High-order Deep Infomax (HDI) to
optimize the proposed high-order mutual information based
supervision signal.

• We propose an attention based fusion module to combine
node embedding from different layers of a multiplex network,
which is trained via the high-order mutual information based
supervision signal.

• We evaluate the proposed methods on a variety of real-world
datasets with various evaluation metrics to demonstrate the
effectiveness of the proposed methods.

The rest of the paper is organized as follows.We briefly introduce
the attributed multiplex network, mutual information and DGI in
Section 2. We introduce the high-order mutual information, as well
as the proposed HDI and HDMI in Section 3. The experimental
results are presented in Section 4. We provide a brief review of the
most relevant works in Section 5. Finally, we conclude the paper in
Section 6.

2 PRELIMINARIES
In this section, we first introduce relevant concepts for attributed
multiplex networks. Then we introduce mutual information re-
lated concepts as well as Deep Graph Infomax (DGI) [37]. We also
summarize the notations used in this paper in Table 1.

2.1 Attributed Multiplex Networks
An attributed multiplex network (Definition 2.2) is comprised of
multiple layers of attributed networks (Definition 2.1).

Definition 2.1 (Attributed Network). An attributed network is rep-
resented by G(𝐴, 𝐹 ), where 𝐴 ∈ R𝑁×𝑁 denotes adjacency matrix
and 𝐹 ∈ R𝑁×𝑑𝐹 denotes the attribute matrix, 𝑁 and 𝑑𝐹 denote the
number of nodes and the dimension of attributes respectively.
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Definition 2.2 (Attributed Multiplex Network). An attributed mul-
tiplex network GM = {G1, · · · ,G𝑅} is comprised of 𝑅 ≥ 1 layers of
attributed networks, where G𝑟 (𝐴𝑟 , 𝐹 ) (𝑟 ∈ [1, · · · , 𝑅], 𝐴𝑟 ∈ R𝑁×𝑁 ,
𝐹 ∈ R𝑁×𝑑𝐹 ) denotes the 𝑟 -th layer. Note that different layers cap-
ture different types of relations between nodes, and all of the layers
share the same node attribute matrix.

2.2 Mutual Information
Mutual information measures the mutual dependence between
two random variables, which is based on Shannon entropy, and its
formal definition is given in Definition 2.3. In order to measure the
mutual dependence betweenmultiple random variables, the concept
of high-order/multivariate mutual information is introduced in the
information theory [23].

Definition 2.3 (Mutual Information). Given two random variables
𝑋 and 𝑌 , the mutual information between them is defined by:

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ) (1)

where 𝐻 (𝑋 ) and 𝐻 (𝑋 |𝑌 ) denote entropy and conditional entropy
respectively, 𝐻 (𝑋,𝑌 ) denotes the entropy for the joint distribution
of 𝑋 and 𝑌 .

Definition 2.4 (High-order Mutual Information [23]). High-order
mutual information is a generalization of mutual information on
𝑁 ≥ 3 random variables. Given a set of 𝑁 random variables
𝑋1, · · · , 𝑋𝑁 , the high-order mutual information is defined anal-
ogous to the definition of mutual information (Definition 2.3):

𝐼 (𝑋1; · · · ;𝑋𝑁 ) =
𝑁∑
𝑛=1

(−1)𝑛+1
∑

𝑖1< · · ·<𝑖𝑛
𝐻 (𝑋𝑖1 , · · · , 𝑋𝑖𝑛 ) (2)

where 𝐻 (𝑋𝑖1 , · · · , 𝑋𝑖𝑛 ) denotes the joint entropy for 𝑋𝑖1 , · · · , 𝑋𝑖𝑛 ,
and the summation

∑
𝑖1< · · ·<𝑖𝑛 𝐻 (𝑋𝑖1 , · · · , 𝑋𝑖𝑛 ) runs over all of the

combinations of random variables ({𝑖1, · · · , 𝑖𝑛} ∈ [1, · · · , 𝑁 ]).

High-order mutual information not only captures the mutual
information between each pair of two random variables but also the
synergy among multiple random variables. Equation (4)-(6) provide
an example when 𝑁 = 3.

2.3 Deep Graph Infomax
DGI is a self-supervised learning or an unsupervised learning
method for learning node embedding on attributed networks (Defi-
nition 2.1), the main idea behind which is to maximize the mutual
information between node embedding h and the global summary
vector s of the entire network G: 𝐼 (h, s).

When maximizing 𝐼 (h, s), DGI leverages negative sampling strat-
egy. Specifically, it first generates a negative network G̃ via a cor-
ruption function G̃ = C(G). Then it uses the same encoder E (e.g.
GCN [16]) to obtain the node embedding for the positive network
{h1, · · · , h𝑁 } as well as the embedding for the negative network
{h̃1, · · · , h̃𝑁 }. Here, 𝑁 is the number of nodes in both of the net-
works. The summary vector of the positive network G is obtained
by a readout function s = R({h1, · · · , h𝑁 }) (e.g. average pooling).
Finally, given s, a discriminator D is used to distinguish the node
embedding of the positive network h𝑛 with the one from the nega-
tive network h̃𝑛 . For more details, please refer to [37].

Table 1: Notations

Symbols Descriptions
G attributed network
GM attributed multiplex network
C corruption function
R readout function
E encoder function
D discriminator
L objective function
𝐴 adjacency matrix
𝐹 node attribute matrix
𝐻 node embedding matrix
𝐼 (𝑋 ;𝑌 ) mutual information between 𝑋 and 𝑌
𝐻 (𝑋 ) entropy of the random variable 𝑋
𝐻 (𝑋 |𝑌 ) conditional entropy of 𝑋 given 𝑌
s global summary vector
h node embedding vector
f node attribute vector

Maximizing the objective function given in the following defini-
tion can effectively maximize 𝐼 (h𝑛, s).

Definition 2.5 (Deep Graph Infomax). Given a node embedding
h𝑛 and a summary vector s of the attributed network and a negative
node embedding h̃𝑛 , the mutual information between h𝑛 and s can
be maximized by maximizing the following objective function:

L = E[logD(h𝑛 ; s)] + E[log(1 − D(h̃𝑛 ; s))] (3)

where D denotes the discriminator aiming at distinguish the neg-
ative node embedding h̃𝑛 with the real embedding h𝑛 , E denotes
the expectation.

3 METHODOLOGY
In this section, we first introduce High-order Deep Infomax (HDI)
for optimizing high-order mutual information on attributed net-
works in Section 3.1 and then extend the proposed HDI to attributed
multiplex networks by introducing High-order Deep Multiplex In-
fomax (HDMI) in Section 3.2.

3.1 High-order Deep Infomax on Attributed
Networks

In this section, we propose a novel High-order Deep Infomax (HDI)
for self-supervised learning on attributed networks based on DGI
[37] and high-order mutual information (Definition 2.4). As men-
tioned in the introduction and preliminary (Section 2.3), DGI merely
considers the extrinsic supervision signal: the mutual information
between the node embedding h𝑛 and the global summary vector s
of a network. Intrinsic signal, i.e., the mutual dependence between
node embedding h𝑛 and attributes f𝑛 has not been fully explored.
We introduce high-order mutual information to simultaneously
capture the extrinsic and intrinsic supervision signals as well as
the synergy between them in Section 3.1.1. We describe the details
of HDI in Section 3.1.2.
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(a) Illustration of the extrinsic and intrinsic supervision.

(b) Illustration of the joint supervision.

Figure 2: Overview of the proposed HDI. The green part shows the extrinsic supervision which maximizes 𝐼 (h𝑛 ; s). The orange
part shows the intrinsic supervisionwhichmaximizes 𝐼 (h𝑛 ; f𝑛). The blue part illustrates the joint supervisionwhichmaximizes
𝐼 (h𝑛 ; f𝑛, s). Detailed description is presented in Section 3.1.

3.1.1 High-order Mutual Information Estimation. For the 𝑛-th node
in the attributed networkG, we propose to jointly maximize the mu-
tual information for three random variables, i.e., node embedding
h𝑛 , the summary vector s and node attributes f𝑛 , via the high-order
mutual information.

According to the definition of the high-order mutual information
(Definition 2.4), when 𝑁 = 3, we will have the following equation:

𝐼 (𝑋1;𝑋2;𝑋3) = 𝐻 (𝑋1) + 𝐻 (𝑋2) + 𝐻 (𝑋3)
− 𝐻 (𝑋1, 𝑋2) − 𝐻 (𝑋1, 𝑋3) − 𝐻 (𝑋2, 𝑋3)
+ 𝐻 (𝑋1, 𝑋2, 𝑋3)

(4)

The above equation can be further re-written as the following
equation:

𝐼 (𝑋1;𝑋2;𝑋3) =𝐻 (𝑋1) + 𝐻 (𝑋2) − 𝐻 (𝑋1, 𝑋2)
+𝐻 (𝑋1) + 𝐻 (𝑋3) − 𝐻 (𝑋1, 𝑋3)
−𝐻 (𝑋1) − 𝐻 (𝑋2, 𝑋3) + 𝐻 (𝑋1, 𝑋2, 𝑋3)
=𝐼 (𝑋1;𝑋2) + 𝐼 (𝑋1;𝑋3) − 𝐼 (𝑋1;𝑋2, 𝑋3)

(5)

where 𝐼 (𝑋1;𝑋2, 𝑋3) denotes the mutual information between the
distribution of 𝑋1 with the joint distribution of 𝑋2 and 𝑋3.

Therefore, by replacing the random variables𝑋1,𝑋2 and𝑋3 with
h𝑛 , s and f𝑛 we will have:

𝐼 (h𝑛 ; s; f𝑛) = 𝐼 (h𝑛 ; s) + 𝐼 (h𝑛 ; f𝑛) − 𝐼 (h𝑛 ; s, f𝑛) (6)

In the above equation, 𝐼 (h𝑛 ; s) captures the extrinsic supervi-
sion signal: the mutual dependence between node embedding h𝑛
and the global summary s. 𝐼 (h𝑛 ; f𝑛) captures the intrinsic supervi-
sion signal: the mutual dependence between node embedding h𝑛
and attributes h𝑛 . 𝐼 (h𝑛 ; s, f𝑛) captures the interaction between the
extrinsic and intrinsic signal.

Maximizing the high-order mutual information in Equation (6)
will result in the following equation:

max 𝐼 (h𝑛 ; s; f𝑛)
=max(𝐼 (h𝑛 ; s) + 𝐼 (h𝑛 ; f𝑛) − 𝐼 (h𝑛 ; s, f𝑛))
=max 𝐼 (h𝑛 ; s) +max 𝐼 (h𝑛 ; f𝑛) −min 𝐼 (h𝑛 ; s, f𝑛)
=max 𝐼 (h𝑛 ; s) +max 𝐼 (h𝑛 ; f𝑛) +max 𝐼 (h𝑛 ; s, f𝑛)

(7)

As can be noted in Equation (7), maximizing the high-order mutual
information is equivalent tomaximize the threemutual information:
𝐼 (h𝑛 ; s), 𝐼 (h𝑛 ; f𝑛) and 𝐼 (h𝑛 ; s, f𝑛).
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Considering the fact that, during training, different mutual infor-
mation on the right-hand side of Equation (7) might have different
magnitudes, therefore, we use different coefficients for different
mutual information. The the final objective function is given by:

L = 𝜆𝐸 𝐼 (h𝑛 ; s) + 𝜆𝐼 𝐼 (h𝑛 ; f𝑛) + 𝜆𝐽 𝐼 (h𝑛 ; s, f𝑛) (8)

where 𝜆𝐸 , 𝜆𝐼 and 𝜆𝐽 are tunable coefficients.

Extrinsic Signal. For maximizing the extrinsic mutual depen-
dence 𝐼 (h𝑛 ; s), we follow [37] and we will have:

L𝐸 = E[logD𝐸 (h𝑛, s)] + E[log(1 − D𝐸 (h̃𝑛, s))] (9)

where h𝑛 and h̃𝑛 are the node embedding from the positive (i.e.,
original) G and the negative network G̃ respectively; the negative
network is obtained by corrupting the positive network via the
corruption function C: G̃ = C(G); D𝐸 denotes the discriminator
for distinguishing h𝑛 and h̃𝑛 .

The green part in Figure 2a provides an illustration for the ex-
trinsic signal.

Intrinsic Signal. For the maximization of the intrinsic mutual
dependence 𝐼 (h𝑛 ; f𝑛), we replace s with f𝑛 in Equation (9) and we
will have:

L𝐼 = E[logD𝐼 (h𝑛, f𝑛)] + E[log(1 − D𝐼 (h̃𝑛, f𝑛))] (10)

where f𝑛 denotes the attribute vector of the 𝑛-th node and D𝐼

denotes the discriminator.
The orange part in Figure 2a provides an illustration for the

intrinsic signal.

Joint Signal. The joint signal 𝐼 (h𝑛 ; s, f𝑛) is comprised of three
random variables: h𝑛 , s and f𝑛 . Rather than substituting s with
(s, f𝑛) in Equation 9 and using the negative node embedding h̃𝑛 to
build the negative sample pairs, we propose to use the negative
node attributes f̃𝑛 to construct the negative samples. This is because
the extrinsic signal has already captured the mutual dependence
between h𝑛 and s, as well as the independence between h̃𝑛 and s
by maximizing Equation 9. The intrinsic signal has captured the
mutual dependence between h𝑛 and f𝑛 , as well as the independence
between h̃𝑛 and f𝑛 via Equation 10. If we add a new discriminator
to distinguish h𝑛 from h̃𝑛 given (s, f𝑛), it will not bring substantial
new information. Instead, we propose to let the discriminator to dis-
tinguish (h𝑛, s, f𝑛) with (h𝑛, s, f̃𝑛). By introducing negative samples
of attributes f̃𝑛 , the encoder E can better capture the joint mutual
dependence among h𝑛 , s and f𝑛 , especially the mutual dependence
between s and f𝑛 , which is not captured by either extrinsic signal
or intrinsic signal. Therefore, we have the following objective:

L𝐽 = E[logD𝐽 (h𝑛, s, f𝑛)] + E[log(1 − D𝐽 (h𝑛, s, f̃𝑛))] (11)

where D𝐽 denotes the discriminator for the joint signal.
The blue part in Figure 2b provides an illustration for the joint

signal.

Training Objective. The final supervision signal is to maximize
the following objective:

L = 𝜆𝐸L𝐸 + 𝜆𝐼L𝐼 + 𝜆𝐽 L𝐽 (12)

where 𝜆𝐸 , 𝜆𝐼 and 𝜆𝐽 are tunable coefficients.

3.1.2 Model Architecture. We elaborates the details of the model
architecture in this section.

Network Encoder E. We use a single layer GCN [16] as E:

𝐻 = 𝑅𝑒𝐿𝑈 (�̂�− 1
2𝐴�̂�− 1

2 𝐹𝑊 ) (13)
where𝐴 = 𝐴 +𝑤𝐼 ∈ R𝑁×𝑁 ,𝑤 ∈ R is the weight of self-connection,
�̂� [𝑖, 𝑖] = ∑

𝑗 𝐴[𝑖, 𝑗]; 𝐹 ∈ R𝑁×𝑑𝐹 and𝐻 ∈ R𝑁×𝑑 denote attributema-
trix and node embedding matrix,𝑊 ∈ R𝑑𝐹×𝑑 denotes the transition
matrix, 𝑅𝑒𝐿𝑈 denotes the rectified linear unit activation function.

Readout Function R. We use average pooling as R:

s = R(𝐻 ) = 1
𝑁

𝑁∑
𝑛=1

h𝑛 (14)

where h𝑛 ∈ R𝑑 is the 𝑛-th row of 𝐻 , s ∈ R𝑑 is the global summary
vector.

Dicriminator D. For D𝐸 and D𝐼 , we follow DGI [37]:

D𝐸 (h𝑛, s) = 𝜎 (h𝑇𝑛𝑀𝐸s) (15)

D𝐼 (h𝑛, f𝑛) = 𝜎 (h𝑇𝑛𝑀𝐼 f𝑛) (16)

where 𝑀𝐸 ∈ R𝑑×𝑑 and 𝑀𝐼 ∈ R𝑑×𝑑𝐹 are parameter matrices, 𝜎 is
the sigmoid activation function.

As for the discriminator for the joint signal D𝐽 , since f𝑛 and
s are not in the same space, we first project them into the same
hidden space, and then use a bi-linear function to obtain the final
scores.

z𝑓𝑛 = 𝜎 (𝑊𝑓 f𝑛) (17)
z𝑠 = 𝜎 (𝑊𝑠s) (18)
z = 𝜎 (𝑊𝑧 [z𝑓𝑛 ; z𝑠 ]) (19)

D𝐽 = 𝜎 (h𝑇𝑛𝑀𝐽 z) (20)

where𝑊𝑓 ∈ R𝑑×𝑑𝐹 ,𝑊𝑠 ∈ R𝑑×𝑑 ,𝑊𝑧 ∈ R𝑑×2𝑑 and 𝑀𝐽 ∈ R𝑑×𝑑 are
parameter matrices, 𝜎 denotes the sigmoid activation function and
[; ] denotes concatenation operation.

Corruption Function C. We follow DGI [37] and use the random
permutation of nodes as the corruption function. Specifically, we
randomly shuffle the rows of attribute matrix 𝐹 .

3.2 High-order Deep Multiplex Infomax
In this section, we extend HDI to the multiplex network and pro-
pose a High-order Deep Multiplex Infomax (HDMI) model. An
attributed multiplex network is comprised of multiple layers of
attributed networks. In order to learn node embedding for the mul-
tiplex networks, we first learn node embedding on each of its layers
separately and then combine them via a fusion module (Section
3.2.1). We leverage the high-order mutual information to train the
fusion module (Section 3.2.2).

3.2.1 Fusion of Embedding. The simplest way of combining node
embedding from different layers is average pooling. However, differ-
ent layers are related to each other. Therefore, we use the semantic
attention [43] based method to fuse the node embedding, as shown
in Figure 3.
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Figure 3: Illustration of the fusion module.

Given a node embedding from the 𝑟 -th layer h𝑟𝑛 ∈ R𝑑 , we use
layer-dependent semantic attention to obtain its score 𝛼𝑟𝑛 by:

𝛼𝑟𝑛 = tanh(y𝑟𝑇𝑉𝑟h𝑟𝑛) (21)

where 𝑉𝑟 ∈ R𝑑′×𝑑 is the parameter matrix, y𝑟 denotes the hidden
representation vector of the 𝑟 -th layer, tanh denotes the tangent
activation function.

Then the weights of node embedding from different layers are
given by:

𝛼𝑟𝑛 =
exp(𝛼𝑟𝑛)∑𝑅

𝑟 ′=1 exp(𝛼
𝑟 ′
𝑛 )

(22)

where 𝑅 is the number of layers in the multiplex network.
The final embedding of the 𝑛-th node can be obtained by:

h𝑛 =

𝑅∑
𝑟=1

𝛼𝑟𝑛h
𝑟
𝑛 (23)

3.2.2 Training. To train the fusion module, we propose to use high-
order mutual information introduced in Section 3.1. Given the fused
embedding h𝑛 , we maximize the mutual information between h𝑛
with its attributes f𝑛 and global summary vector s of the multiplex
network. The training objective andmodel architecture are the same
as those introduced in Section 3.1, but there are two differences:
the global summary vector s and negative node embedding h̃𝑛 . For
s of the multiplex network, we use average pooling over the fused
embedding h𝑛 to obtain it. Additionally, we obtain the negative
node embedding h̃𝑛 of the multiplex network by combining the
negative node embedding h̃𝑟𝑛 from different layers via the fusion
module.

The fusion module can be trained jointly with HDI on different
layers, and the final objective of HDMI is:

L = 𝜆𝑀L𝑀 +
𝑅∑
𝑟=1

𝜆𝑟L𝑟 (24)

where L𝑀 and L𝑟 denote the objective for the fusion module and
the 𝑟 -th layer respectively, 𝜆𝑀 and 𝜆𝑟 are tunable coefficients. Note
that both L𝑀 and L𝑟 are given by Equation (12).

4 EXPERIMENTS
We presents the experiments to answer the following questions:

Q1 How will the HDI and HDMI improve the quality of the
learned node embedding?

Q2 Will the fusion module assign proper attention scores to
different layers?

4.1 Experimental Setup
4.1.1 Datasets. We use the same datasets as [28].

ACM. The ACM1 dataset contains 3,025 papers with two types
of paper relations: paper-author-paper and paper-subject-paper.
The attribute of each paper is a 1,830-dimensional bag-of-words
representation of the abstract. The nodes are categorized into three
classes: Database,Wireless Communication andDataMining.When
training the classifier, 600 nodes are used as training samples.

IMDB. The IMDB2 dataset contains 3,550 movies with two types
of relations, includingmovie-actor-movie andmovie-director-movie.
The attribute of each movie is a 1,007-dimensional bag-of-words
representation of its plots. The nodes are annotated with Action,
Comedy or Drama, and 300 nodes are used for training classifiers.

DBLP. The DBLP3 dataset [35] is a multiplex network of 7,907 pa-
pers. There are three types of relations: paper-paper, paper-author-
paper, paper-author-term-author-paper. The attribute of each paper
is a 2,000-dimensional bag-of-words representation of its abstracts.
The nodes can be categorized into four categories: Data Mining,
Artificial Intelligence, Computer Vision and Natural Language Pro-
cessing. 80 nodes are used for training classifiers.

Amazon. The Amazon4 dataset [11] contains 7,621 items from
four categories (Beauty, Automotive, Patio Lawn and Garden, and
Baby) with three types of relations (Also View, Also Bought and
Bought Together). The attribute of each item is a 2,000-dimensional
bag-of-words representation of its description.

4.1.2 Comparison Methods. We compare our proposed method
with two sets of baseline methods: network embedding methods
and multiplex network embedding methods.

Network Embedding.
• Methods disregarding attributes: DeepWalk [30] and node2vec
[9]. These two methods are random-walk and skip-gram
based embedding models.

• Methods considering attributes: GCN [16] and GAT [36].
These two methods learn node embedding based on the lo-
cal structure of the nodes, and the best performance of the
two methods are reported. DGI [37] maximizes the mutual
information between node embedding and the global sum-
mary vector. ANRL [46] uses skip-gram to model the local
contextual topology and uses an auto-encoder to capture
attribute information. CAN [24] learns node embedding and
attribute embedding in the same semantic space. DGCN [49]
considers both local and global consistency.

1https://www.acm.org/
2https://www.imdb.com/
3https://aminer.org/AMinerNetwork
4https://www.amazon.com/

https://www.acm.org/
https://www.imdb.com/
https://aminer.org/AMinerNetwork
https://www.amazon.com/
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Table 2: Statistics of the datasets

Datasets # Nodes Relation Types # Edges # Attributes # Labeled Data # Classes

ACM 3,025 Paper-Subject-Paper (PSP) 2,210,761 1,830 600 3Paper-Author-Paper (PAP) 29,281 (Paper Abstract)

IMDB 3,550 Movie-Actor-Movie (MAM) 66,428 1,007 300 3Movie-Director-Movie (MDM) 13,788 (Movie plot)

DBLP 7,907
Paper-Author-Paper (PAP) 144,783 2,000

(Paper Abstract) 80 4Paper-Paper-Paper (PPP) 90,145
Paper-Author-Term-Author-Paper (PATAP) 57,137,515

Amazon 7,621
Item-AlsoView-Item (IVI) 266,237 2,000

(Item description) 80 4Item-AlsoBought-Item (IBI) 1,104,257
Item-BoughtTogether-Item (IOI) 16,305

Multiplex Network Embedding.

• Methods disregarding attributes: CMNA [5] uses the cross-
network information to refine both of the inter-network
and intra-network node embedding. MNE [44] uses a com-
mon embedding with multiple additional embedding from
different layers for each node.

• Methods considering attributes: mGCN [21] and HAN [39]
use GCN/GAT to extract node embedding for each layer
of the multiplex networks and then combine them via at-
tention mechanism. DMGI and DMGIattn [28] extend DGI
onto multiplex networks and uses consensus regularization
to combine node embedding from different layers, where
DMGIattn leverages attention to obtain the reference node
embedding.

4.1.3 Evaluation Metrics. We evaluate our proposed HDMI and
comparison methods on both of the unsupervised tasks (i.e., cluster-
ing and similarity search [28, 39]) and a supervised task (i.e., node
classification) with the following evaluation metrics.

• Macro-F1 and Micro-F1 are used to evaluate models on the
node classification task.

• Normalized Mutual Information (NMI) is adopted for the
node clustering task.

• Sim@5 evaluates how well does a model project nodes with
the same label to nearby positions in the embedding space.

For the clustering and classification, we first train models with
their self-supervision signals and then run the clustering methods
(i.e., K-means) and classification methods (i.e., logistic regression)
to obtain the NMI and Macro-F1/Micro-F1 scores. For similarity
search, we follow [28, 39] to first compute the cosine similarity
between each pair of nodes based on their embedding. Then for
each node, the top-5 most similar nodes are selected to calculate
the ratio of nodes sharing the same label (Sim@5).

4.1.4 Implementation Details. We set the dimension of node em-
bedding as 128, and use Adam optimizer [14] with the learning rate
of 0.001 to optimize the models. The weight of the self-connection
for GCN is fixed as 3. Following [28], for HDMI, we use the same
discriminator for different layers. We use grid search to tune the co-
efficients and report the best results. Early stopping with a patience
of 100 is adopted to prevent overfitting.

4.2 Quantitative Evaluation
In this section, we present the experimental results on both super-
vised and unsupervised downstream tasks to quantitatively demon-
strate the effectiveness of the proposed supervision signals as well
as the proposed models HDI and HDMI.

4.2.1 Overall Performance. We present the experimental results
of node classification, node clustering and similarity search on the
multiplex networks in Table 3 and Table 4. HDI separately learns
embedding on different layers and uses average pooling to combine
node embedding from different layers. Table 3 shows that HDMI
outperforms the state-of-the-art models for all of the supervised
tasks, and Table 4 shows that HDMI achieves higher scores for most
of the cases on the unsupervised tasks. These results demonstrate
that the embedding extracted by HDMI is more discriminative.
Additionally, the scores of HDI are generally competitive to the
state-of-the-art methods, which demonstrate the effectiveness of
the proposed HDI to a certain degree.

4.2.2 Ablation Study.

Performance of the fusion module. To evaluate the proposed fu-
sion module, we compare it with average pooling. As shown in
Table 3 and Table 4, HDMI outperforms HDI on all metrics for all
datasets, except for the Sim@5 on the ACM dataset. However, it
can be noted that the gap is very tiny.

Performance of different supervision signals. We compare the per-
formance of the Extrinsic (E.), Intrinsic (I.), and Joint (J) signal as
well as the Reconstruction (R.) error on attributed networks (differ-
ent layers of the multiplex networks) in the datasets, and present
experimental results in Table 5 and Table 6. Firstly, incorporating
the mutual dependence between embedding and attributes could
improve the model’s performance on both supervised and unsu-
pervised tasks, which can be observed by comparing E. with E.+R.
and E.+I. Secondly, maximizing mutual information between node
embedding and attributes (E.+I.) is better thanminimizing the recon-
struction error of attributes given node embedding (E.+R.). Thirdly,
the joint signal (E.+I.+J.) can further improve the discriminative
ability of node embedding for the node classification task. Finally,
combining node embedding from different layers (lower parts of
Table 5-6) will result in better results, indicating that different layers
can mutually help each other.
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Table 3: Overall performance on the supervised task: node classification.

Dataset ACM IMDB DBLP Amazon
Metric Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
DeepWalk 0.739 0.748 0.532 0.550 0.533 0.537 0.663 0.671
node2vec 0.741 0.749 0.533 0.550 0.543 0.547 0.662 0.669
GCN/GAT 0.869 0.870 0.603 0.611 0.734 0.717 0.646 0.649
DGI 0.881 0.881 0.598 0.606 0.723 0.720 0.403 0.418
ANRL 0.819 0.820 0.573 0.576 0.770 0.699 0.692 0.690
CAN 0.590 0.636 0.577 0.588 0.702 0.694 0.498 0.499
DGCN 0.888 0.888 0.582 0.592 0.707 0.698 0.478 0.509
CMNA 0.782 0.788 0.549 0.566 0.566 0.561 0.657 0.665
MNE 0.792 0.797 0.552 0.574 0.566 0.562 0.556 0.567
mGCN 0.858 0.860 0.623 0.630 0.725 0.713 0.660 0.661
HAN 0.878 0.879 0.599 0.607 0.716 0.708 0.501 0.509
DMGI 0.898 0.898 0.648 0.648 0.771 0.766 0.746 0.748
DMGIattn 0.887 0.887 0.602 0.606 0.778 0.770 0.758 0.758
HDI 0.901 0.900 0.634 0.638 0.814 0.800 0.804 0.806
HDMI 0.901 0.901 0.650 0.658 0.820 0.811 0.808 0.812

Table 4: Overall performance on the unsupervised tasks: node clustering and similarity search.

Dataset ACM IMDB DBLP Amazon
Metric NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5
DeepWalk 0.310 0.710 0.117 0.490 0.348 0.629 0.083 0.726
node2vec 0.309 0.710 0.123 0.487 0.382 0.629 0.074 0.738
GCN/GAT 0.671 0.867 0.176 0.565 0.465 0.724 0.287 0.624
DGI 0.640 0.889 0.182 0.578 0.551 0.786 0.007 0.558
ANRL 0.515 0.814 0.163 0.527 0.332 0.720 0.166 0.763
CAN 0.504 0.836 0.074 0.544 0.323 0.792 0.001 0.537
DGCN 0.691 0.690 0.143 0.179 0.462 0.491 0.143 0.194
CMNA 0.498 0.363 0.152 0.069 0.420 0.511 0.070 0.435
MNE 0.545 0.791 0.013 0.482 0.136 0.711 0.001 0.395
mGCN 0.668 0.873 0.183 0.550 0.468 0.726 0.301 0.630
HAN 0.658 0.872 0.164 0.561 0.472 0.779 0.029 0.495
DMGI 0.687 0.898 0.196 0.605 0.409 0.766 0.425 0.816
DMGIattn 0.702 0.901 0.185 0.586 0.554 0.798 0.412 0.825
HDI 0.650 0.900 0.194 0.605 0.570 0.799 0.487 0.856
HDMI 0.695 0.898 0.198 0.607 0.582 0.809 0.500 0.857

4.3 Qualitative Evaluation
In this section, we present the qualitative evaluation results.

4.3.1 Visualization of node embedding.

Node embedding of an attributed network. We show the t-sne [22]
visualization of the node embedding of the IOI layer in the Amazon
dataset learned by the Extrinsic (E.), the Extrinsic + Reconstruction
(E. + R.), the Extrinsic + Intrinsic (E. + I.) and the Extrinsic + Intrinsic
+ Joint (E. + I. + J.) signals in Figure 4. Different colors in the figure
represent different classes. It is obvious that the intrinsic signal and
the joint signal significantly improve the discriminative ability of
the node embedding, and the joint signal can further improve the
quality of the node embedding Additionally, Figure 4b shows that
the reconstruction error does not substantially connect with the
discriminative ability of the node embedding.

Node embedding of a multiplex network. The t-sne visualization
for the node embedding learned by HDI on the PSP and the PAP
layer of the ACM multiplex network are presented in Figure 5a-5b.
Figure 5c-5d show the combined embedding obtained by average
pooling and fusion module. As can be noted in the red boxes of
Figure 5b-5c, average pooling for the embedding of different lay-
ers better separates nodes than the embedding learned from PAP
layer alone. Additionally, Figure 5c-5d show that the fusion module
separates the nodes even better than the average pooling.

4.3.2 Attention scores. We present the visualization of attention
scores and the Micro-F1 scores for each layer of the multiplex net-
works in Figure 6. Generally, for the layers that have higher Micro-
F1 scores, their attention scores are also higher, demonstrating the
effectiveness of the proposed fusion module.
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Table 5: Ablation study on the supervised task: node classification. MaF1 andMiF1 denote Macro-F1 andMicro-F1. E., I., J., and
R. denote the Extrinsic, Intrinsic, Joint mutual information and Reconstruction error. The results of HDMIavg and HDMI are
copied from Table 3 to better show the effectiveness of combining different layers.

Dataset ACM IMDB DBLP Amazon
Layer PSP PAP MDM MAM PAP PPP PATAP IVI IBI IOI
Metric MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1
E. 0.663 0.668 0.855 0.853 0.573 0.586 0.558 0.564 0.804 0.796 0.728 0.717 0.240 0.272 0.380 0.388 0.386 0.410 0.569 0.574
E. + R. 0.668 0.673 0.864 0.847 0.590 0.597 0.560 0.570 0.809 0.801 0.737 0.728 0.240 0.280 0.392 0.398 0.410 0.427 0.579 0.589
E. + I. 0.719 0.732 0.886 0.887 0.617 0.624 0.593 0.600 0.803 0.792 0.742 0.733 0.240 0.276 0.559 0.561 0.517 0.527 0.792 0.799
E. + I. + J. 0.742 0.744 0.889 0.888 0.626 0.631 0.600 0.606 0.812 0.803 0.751 0.745 0.241 0.284 0.581 0.583 0.524 0.529 0.796 0.799

Metric MaF1 MiF1 MaF1 MiF1 MaF1 FiF1 MaF1 MiF1
HDI 0.901 0.900 0.634 0.638 0.814 0.800 0.804 0.806
HDMI 0.901 0.901 0.650 0.658 0.820 0.811 0.808 0.812

Table 6: Ablation study on the unsupervised tasks: node clustering and similarity search. S@5 denotes Sim@5. E., I., J., and
R. denote the Extrinsic, Intrinsic, Joint mutual information and Reconstruction error. The results of HDMIavg and HDMI are
copied from Table 4 to better show the effectiveness of combining different layers.

Dataset ACM IMDB DBLP Amazon
Layer PSP PAP MDM MAM PAP PPP PATAP IVI IBI IOI
Metric NMI S@5 NMI S@5 NMI S@5 NMI S@5 NMI S@5 NMI S@5 NMI S@5 NMI S@5 NMI S@5 NMI S@5
E. 0.526 0.698 0.651 0.872 0.145 0.549 0.089 0.495 0.547 0.800 0.404 0.741 0.054 0.583 0.002 0.395 0.003 0.414 0.038 0.701
E. + R. 0.525 0.728 0.659 0.874 0.150 0.552 0.079 0.490 0.564 0.804 0.421 0.741 0.051 0.568 0.002 0.399 0.003 0.426 0.020 0.660
E. + I. 0.527 0.708 0.656 0.882 0.193 0.595 0.143 0.527 0.569 0.802 0.405 0.741 0.053 0.569 0.152 0.512 0.143 0.517 0.401 0.824
E. + I. + J. 0.528 0.716 0.662 0.886 0.194 0.592 0.143 0.527 0.562 0.805 0.408 0.742 0.054 0.591 0.169 0.544 0.153 0.525 0.407 0.826

Metric NMI Sim@5 NMI Sim@5 NMI Sim@5 NMI Sim@5
HDI 0.650 0.900 0.194 0.605 0.570 0.799 0.487 0.856
HDMI 0.695 0.898 0.198 0.607 0.582 0.809 0.500 0.857

(a) E. (b) E. + R. (c) E. + I. (d) E. + I. + J.

Figure 4: Visualization of the node embedding on the IOI layer of the Amazon dataset. The four different colors represent four
different classes of the nodes. E., I., J., and R. denote the Extrinsic, Intrinsic, Joint mutual information and Reconstruction
error.

(a) PSP (b) PAP (c) Average (d) Fusion

Figure 5: Visualization of the node embedding on the ACM dataset. PSP and PAP are two layers of the ACMmultiplex network.
Different colors represent different classes of the nodes. Average and fusion denote using average pooling and the proposed
fusion module to obtain the combined embedding. As shown in the red boxes, the fusion module better separates different
classes than average pooling.



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Baoyu Jing, Chanyoung Park, and Hanghang Tong

(a) ACM (b) IMDB (c) DBLP (d) Amazon

Figure 6: Attention scores and Micro-F1 scores for each layer.

5 RELATEDWORKS
In this section, we briefly review the most relevant works, including
the self-supervised graph representation learning (Section 5.1), the
graph neural networks (Section 5.2), as well as the mutual informa-
tion methods (Section 5.3).

5.1 Self-supervised Network Representation
Learning

In this section, we mainly focus on self-supervised network embed-
dingmethods. For a comprehensive review, please refer to [6, 45, 48].
We leave the mutual information related methods to Section 5.2,
and graph neural networks with other signals to Section 5.3.

Inspired by word2vec [25], deepwalk [30] and node2vec [9] lever-
age random walks to sample context of a node, and then learn node
embedding by maximizing the probabilities of the sampled neigh-
bors. SDNE [38] and LINE [34] propose to learn node embedding
based on the first-order and the second-order proximities between
nodes. Struct2vec [38] further designs a training signal based on
the local structural similarity of the nodes. However, these methods
ignore node attributes. Zhang et al. [46] uses a neighbor enhance-
ment auto-encoder to encoder attributes with the re-construction
error. Meng et al. [24] propose to co-embed attributes and nodes
into the same semantic space via Variational Auto-Encoder (VAE)
[15], but VAE tends to minimize the mutual information between
inputs and hidden features [47].

The multiplex network is also known as multi-dimensional net-
work [20]. Liu et al. [19] propose a random walk based method
to map multiplex networks into a vector space. Zhang et al. [44]
propose a scalable multiplex network embedding method trained
via negative sampling. Shi et al. [33] leverage preservation and col-
laboration to learn node embedding. Ma et al. [21] propose mGCN
for multiplex networks trained via negative sampling. Cen et al.
[4] use the random walk based method to train a unified network
for attributed multiplex networks. Ban et al. [42] introduce a den-
sity metric as the training signal to improve the performance of
node clustering. Li et al. [17] introduce MANE considering both
within-layer and cross-layer dependency.

5.2 Graph Neural Networks
In this section, we briefly review the graph neural networks with ex-
ternal training signals (e.g. cross-entropy between predicted labels
and real labels). For a comprehensive review of the graph neural
networks, please refer to [45, 48].

Kipf et al. [16] propose Graph Convolutional Network (GCN)
based on [7]. Hamilton et al. [10] propose an aggregation-based
model called GraphSAGE. Graph Attention Network (GAT) [36]
learns different weights for a node’s neighbors by attention mecha-
nism. Zhuang et al. [49] propose DGCN which considers both local
and global consistency.

Qu et al. [31] use an attention mechanism to embed multiplex
networks into a single collaborated embedding. Wang et al. [39]
propose an attention based method called HAN for merging node
embedding from different layers. Chu et al. [5] propose CrossMNA
which leverages cross-network information for network alignment.
Yan et al. [40] introduce DINGAL for dynamic knowledge graph
alignment. Jing et al.[13] propose TGCN for modeling high-order
tensor graphs.

5.3 Mutual Information Methods
Belghazi et al. [2] propose MINE to estimate mutual information
of two random variables by neural networks. Mukherjee et al. [26]
propose a classifier based neural estimator for conditional mutual
information. Recently, the infomax principle [18] has been used
for self-supervised representation learning in computer vision [12]
and speech recognition [32] by maximizing the mutual information
between different hidden features. In the field of network represen-
tation learning, DGI [37] maximizes the mutual information of node
embedding with the global summary vector. Peng et al. [29] propose
GMI for homogeneous networks. Park et al. [27, 28] extend DGI
onto multiplex networks and propose a consensus regularization
to combine embedding of different layers.

6 CONCLUSION
In this paper, we introduce a novel High-order Deep Multiplex
Infomax (HDMI) to learn network embedding for multiplex net-
works via self-supervised learning. Firstly, we propose a High-order
Deep Infomax (HDI) and use high-order mutual information as the
training signal for attributed networks. The proposed signal simul-
taneously captures the extrinsic signal (i.e., the mutual dependence
between node embedding and the global summary), the intrinsic
signal (i.e., the mutual dependence between node embedding and
attributes), and the interaction between these two signals. Secondly,
we propose a fusion module based on the attention mechanism to
combine node embedding from different layers. We evaluate the
proposed HDMI on four real-world datasets for both unsupervised
and supervised downstream tasks. The results demonstrate the
effectiveness of the proposed HDMI, HDI, and the fusion module.
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