Selected Publications

“Prize” Papers (best papers, runner-ups, finalists, etc)

  • Z. Xu, K. Ding, Y. Wang, H. Liu, and H. Tong: Generalized Few-Shot Node Classification. ICDM 2022, (Best-ranked paper of ICDM 2022)

  • Z. Yu, D. Jin, Z. Liu, D. He, X. Wang, H. Tong, and J. Han: AS-GCN: Adaptive Semantic Architecture of Graph Convolutional Networks for Text-Rich Networks, ICDM 2021, (best student paper runner-up)

  • Si Zhang, Hanghang Tong, Jiejun Xu, Ross Maciejewski: Graph Convolutional Networks: Algorithms, Applications and Open Challenges [PDF] (bests of CsoNet 2018)

  • Yaojing Wang, Yuan Yao, Hanghang Tong, Xuan Huo, Min Li, Feng Xu, Jian Lu: Bug Localization via Supervised Topic Modeling. [PDF] (bests of ICDM 2018)

  • Scott Freitas, Hanghang Tong, Nan Cao, Yinglong Xia: Rapid Analysis of Network Connectivity. [PDF] (best demo candidate (second place), CIKM 2017)

  • Robert Pienta, Fred Hohman, Acar Tamersoy, Alex Endert, Shamkant B. Navathe, Hanghang Tong, Duen Horng Chau: Visual Graph Query Construction and Refinement. [PDF] (best demo, honorable mention, SIGMOD 2017)

  • Chen Chen, Hanghang Tong, Lei Xie, Lei Ying, Qing He: FASCINATE: Fast Cross-Layer Dependency Inference on Multi-layered Networks. [PDF] [Slides] (bests of KDD 2016)

  • Chen Chen, Hanghang Tong: Fast Eigen-Functions Tracking on Dynamic Graphs. [PDF] [Slides] (bests of SDM 2015)

  • Rui Liu, Wei Cheng, Hanghang Tong, Wei Wang, Xiang Zhang: Robust Multi-Network Clustering via Joint Cross-Domain Cluster Alignment. [PDF] (bests of ICDM 2015)

  • Xing Su, Hanghang Tong and Ping Ji: Activity Recognition with Smartphone Sensors. [PDF] (best paper, IEEE Tsinghua Science and Technology 2014)

  • Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, Christos Faloutsos: Gelling, and melting, large graphs by edge manipulation. [PDF] [slides] (best paper, CIKM 2012)

  • Hanghang Tong, Ching-Yung Lin: Non-Negative Residual Matrix Factorization with Application to Graph Anomaly Detection. [PDF] [Slides] (bests of SDM 2011)

  • Jingrui He, Hanghang Tong, Jaime G. Carbonell: Rare Category Characterization. [PDF] (bests of ICDM 2010)

  • Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos: Proximity Tracking on Time-Evolving Bipartite Graphs. [PDF] [Slides] (best paper, SDM 2008)

  • Hanghang Tong, Christos Faloutsos, Jia-Yu Pan: Fast Random Walk with Restart and Its Applications. [PDF] [Slides] [Code] (best paper, ICDM 2006)

Books

Survey, Review and Position Papers

  • M. Loui, N. Bosch, A. Chan, J. Davis, R. Gutiérrez, J. He, K. Karahalios, S. Koyejo, R. Mendenhall, M. Sanfilippo, H. Tong, L. Varshney, Y. Wang: Artificial Intelligence, Social Responsibility, and the Roles of the University. Communications of the ACM 67 (8), 22-25, 2024

  • M. Zitnik, M. Li, A. Wells, K. Glass, D. Gysi, A. Krishnan, T. Murali, P. Radivojac, S. Roy, A. Baudot, S. Bozdag, D. Chen, L. Cowen, K. Devkota, A. Gitter, S. Gosline, P. Gu, P. Guzzi, H. Huang, M. Jiang, Z. Kesimoglu, M. Koyuturk, J. Ma, A. Pico, N. Pržulj, T. Przytycka, B. Raphael, A. Ritz, R. Sharan, Y. Shen, M. Singh, D. K Slonim, H. Tong, X. Yang, B. Yoon, H. Yu, T. Milenković: Current and future directions in network biology. Bioinformatics Advances, 2024

  • H. Zhang, B. Wu, X. Yuan, S. Pan, H. Tong, J. Pei: Trustworthy Graph Neural Networks: Aspects, Methods, and Trends. Proc. IEEE 112(2): 97-139 (2024), (Cover of PIEEE)

  • L. Zheng, B. Jing, Z. Li, H. Tong, and J. He: Heterogeneous Contrastive Learning for Foundation Models and Beyond. KDD 2024

  • D. Fu, W. Bao, R. Maciejewski, H. Tong, J. He: Privacy-Preserving Graph Machine Learning from Data to Computation: A Survey. SIGKDD Explor. 25(1): 54-72 (2023)

  • S., Freitas, D. Yang, S. Kumar, H. Tong, and D. Chau: Graph Vulnerability and Robustness: A Survey. IEEE TKDE 2023

  • K. Ding, Z. Xu, H. Tong, and H. Liu: Data Augmentation for Deep Graph Learning: A Survey. SIGKDD Explorations 2022

  • Y. Wang, H. Tong, Z. Zhu and Y. Li: Nested Named Entity Recognition: A Survey. ACM TKDD 16(6): 108:1-108:29 (2022)

  • Y. Shi, Y. Liu, H. Tong, J. He, G. Yan, N. Cao: Visual Analytics of Anomalous User Behaviors: A Survey. IEEE Trans. Big Data 8(2): 377-396 (2022)

  • Y. Wang, Y. Yao, H. Tong, F. Xu, J. Lu: A Brief Review of Network Embedding. Big Data Min. Anal. 2(1): 35-47 (2019), (Excellent Paper Award 2021)

  • Y. Shi, Y. Liu, H. Tong, J. He, G. Yan, and N. Cao: Visual Analytics of Anomalous User Behaviors: A Survey. IEEE Transactions on Big Data 2019

  • S. Zhang, H. Tong, J. Xu and R. Maciejewski: Graph Convolutional Networks: A Comprehensive Review. Springer - Computational Social Networks 2019, (Bests of CSoNet 2018)

  • Y. Yao, H. Tong, F. Xu, J. Lu: On the Measurement and Prediction of Web Content Utility. A Review. SIGKDD Explorations 19(2): 1-12 (2017)

  • X. Su, H. Tong and P. Ji: “Activity Recognition with Smartphone Sensors”, Tsinghua Science and Technology, 19 (3), 235-249, 2014, (Best Paper Award 2015)

  • L. Akoglu, H. Tong, D. Koutra: “Graph-based Anomaly Detection and Description: A Survey”, DAMI, 29(3): 626-688, 2015

Sample Papers

  • Z. Liu, R. Qiu, Z. Zeng, Y. Zhu, H. Hamann, H. Tong: AIM: Attributing, Interpreting, Mitigating Data-encoded Unfairness. KDD 2024

  • J. Wu, H. Tong and J. He: Distributional Network of Networks for Modeling Data Heterogeneity. KDD 2024

  • R. Qiu, and H. Tong: Gradient Compressed Sensing: A Query-Efficient Gradient Estimator for High-Dimensional Zeroth-Order Optimization. ICML 2024

  • Z. Zeng, R. Qiu, Z. Xu, Z. Liu, Y. Yan, T. Wei, L. Ying, J. He, H. Tong: Graph Mixup on Approximate Gromov–Wasserstein Geodesics. ICML 2024

  • Z. Liu, R. Qiu, Z. Zeng, H. Yoo, D. Zhou, Z. Xu, Y. Zhu, K. Weldemariam, J. He, H. Tong: Class-Imbalanced Graph Learning without Class Rebalancing. ICML 2024

  • H. Xu, Y. Yan, D. Wang, Z. Xu, Z. Zeng, T. Abdelzaher, J. Han, and H. Tong : SLOG: An Inductive Spectral Graph Neural Network Beyond Polynomial Filter. ICML 2024

  • Y. Ban, I. Agarwal, Z. Wu, Y. Zhu, K. Weldemariam, H. Tong, J. He: Neural Active Learning Beyond Bandits. ICLR 2024

  • J. Kang, Y. Xia, R. Maciejewski, J. Luo, H. Tong: Deceptive Fairness Attacks on Graphs via Meta Learning. ICLR 2024

  • Y. Yan, Y. Hu, Q. Zhou, L. Liu, Z. Zeng, Y. Chen, M. Pan, H. Chen, M. Das, H. Tong: PaCEr: Network Embedding From Positional to Structural. WWW 2024: 2485-2496

  • H. Yoo, Z. Zeng, J. Kang, R. Qiu, D. Zhou, Z. Liu, F. Wang, C. Xu, E. Chan, H. Tong: Ensuring User-side Fairness in Dynamic Recommender Systems. WWW 2024: 3667-3678

  • Y. Yan, Y. Chen, H. Chen, M. Xu, M. Das, H. Yang, H. Tong: From Trainable Negative Depth to Edge Heterophily in Graphs. NeurIPS 2023

  • Y. Yan, B. Jing, L. Liu, R. Wang, J. Li, T. Abdelzaher, H. Tong: Reconciling Competing Sampling Strategies of Network Embedding. NeurIPS 2023

  • Z. Xu, Y. Chen, Q. Zhou, Y. Wu, M. Pan, H. Yang, H. Tong: Node Classification Beyond Homophily: Towards a General Solution. KDD 2023

  • Z. Xu, Y. Chen, M. Pan, H. Chen, M. Das, H. Yang, H. Tong: Kernel Ridge Regression-Based Graph Dataset Distillation. KDD 2023

  • D. Wang, Y. Yan, R. Qiu, Y. Zhu, K. Guan, A. Margenot, H. Tong: Networked Time Series Imputation via Position-aware Graph Enhanced Variational Autoencoders. KDD 2023

  • R. Qiu, D. Wang, L. Ying, H. Poor, Y. Zhang, H. Tong: Reconstructing Graph Diffusion History from a Single Snapshot. KDD 2023

  • Z. Zeng, R. Zhu, Y. Xia, H. Zeng, and H. Tong: Generative Graph Dictionary Learning. ICML 2023

  • Z. Zeng, S. Zhang, Y. Xia and H. Tong: PARROT: Position-Aware Regularized Optimal Transport for Network Alignment. WWW 2023

  • L. Liu, Y. Chen, M. Das, H. Yang and H. Tong: Knowledge Graph Question Answering with Ambiguous Query. WWW 2023

  • Y. Ko, S. Ryu, S. Han, Y. Jeon, J. Kim, S. Park, K. Han, H. Tong and S. Kim: KHAN: Knowledge-Aware Hierarchical Attention Networks for Accurate Political Stance Prediction. WWW 2023

  • W. Cong, S. Zhang, J. Kang, B. Yuan, H. Wu, X. Zhou, H. Tong, and M. Mahdavi: Do We Really Need Complicated Model Architectures For Temporal Networks? ICLR 2023, (notable-top-5%)

  • C. Han, Q. He, C. Yu, X. Du, H. Tong, and H. Ji: Logical Entity Representation in Knowledge-Graphs for Differentiable Rule Learning. ICLR 2023

  • H. Wang, W. Huang, Z. Wu, H. Tong, A. Margenot, and J. He: Deep Active Learning by Leveraging Training Dynamics. NeuIPS 2022

  • J. Xie, J. Xu, G. Wang, Y. Yao, Z. Li, C. Cao, and H. Tong: A Deep Learning Data loader with Shared Data Preparation. NeuIPS 2022

  • H. Li, Y. Weng, and H. Tong: CoNSoLe: Convex Neural Symbolic Learning. NeuIPS 2022

  • Y. Ban, Y. Zhang, H. Tong, A. Banerjee, and J. He: Improved Algorithms for Neural Active Learning. NeuIPS 2022

  • Z. Xu, K. Ding, Y. Wang, H. Liu, and H. Tong: Generalized Few-Shot Node Classification. ICDM 2022, (Best-ranked paper of ICDM 2022)

  • L. Liu, B. Du, J. Xu, Y. Xia and H. Tong: Joint Knowledge Graph Completion and Question Answering. KDD 2022

  • J. Kang, Q. Zhou and H. Tong: JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks. KDD 2022

  • J. Liu, Z. Li, Y. Yao, F. Xu, X. Ma, M. Xu and H. Tong: Fair Representation Learning: An Alternative to Mutual Information. KDD 2022

  • H. Li, H. Tong and Y. Weng: Domain Adaptation in Physical Systems via Graph Kernel. KDD 2022

  • Z. Xu, B. Du and H. Tong: Graph Sanitation with Application to Node Classification. WWW 2022: 1136-1147

  • B. Li, B. Jing and H. Tong: Graph Communal Contrastive Learning. WWW 2022: 1203-1213

  • J. Kang, Y. Zhu, Y. Xia, J. and H. Tong: RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022: 1214-1225

  • S. Feng, B. Jing, Y. Zhu and H. Tong: Adversarial Graph Contrastive Learning with Information Regularizer. WWW 2022: 1362-1371

  • Z. Yu, D. Jin, Z. Liu, D. He, X. Wang, H. Tong, and J. Han: AS-GCN: Adaptive Semantic Architecture of Graph Convolutional Networks for Text-Rich Networks, ICDM 2021, (best student paper runner-up)

  • Boxin Du, Lihui Liu, Hanghang Tong: Sylvester Tensor Equation for Multi-Way Association. KDD 2021 [PDF] [Slides]

  • Si Zhang, Hanghang Tong, Long Jin, Yinglong Xia, Yunsong Guo: Balancing Consistency and Disparity in Network Alignment. KDD 2021. [PDF] [Slides]

  • Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, Hanghang Tong: Neural-Answering Logical Queries on Knowledge Graphs. KDD 2021. [PDF] [Slides] [Code]

  • Lihui Liu, Boxin Du, Yi Ren Fung, Heng Ji, Jiejun Xu, Hanghang Tong: KompaRe: A Knowledge Graph Comparative Reasoning System. KDD 2021. [PDF] [Slides] [Code]

  • Yushun Dong, Jian Kang, Hanghang Tong, Jundong Li: Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021 [PDF]

  • Baoyu Jing, Chanyoung Park, Hanghang Tong: HDMI: High-order Deep Multiplex Infomax. WWW 2021 [PDF] [Slides] [Code]

  • Baoyu Jing, Hanghang Tong, Yada Zhu: Network of Tensor Time Series. WWW 2021 [PDF] [Slides] [Code]

  • Kaize Ding, Qinghai Zhou, Hanghang Tong, Huan Liu: Few-shot Network Anomaly Detection via Cross-network Meta-learning. WWW 2021 [PDF] [Slides] [Code]

  • Qinghai Zhou, Liangyue Li, Xintao Wu, Nan Cao, Lei Ying, Hanghang Tong: Attent: Active Attributed Network Alignment. WWW 2021 [PDF] [Slides] [Code]

  • Jian Kang, Jingrui He, Ross Maciejewski, Hanghang Tong: InFoRM: Individual Fairness on Graph Mining. KDD 2020 [PDF] [Slides]

  • Si Zhang, Hanghang Tong, Yinglong Xia, Liang Xiong, Jiejun Xu: NetTrans: Neural Cross-Network Transformation. KDD 2020 [PDF][Slides]

  • Long Chen, Yuan Yao, Feng Xu, Miao Xu, Hanghang Tong: Trading Personalization for Accuracy: Data Debugging in Collaborative Filtering. NeurIPS 2020 [PDF]

  • Yaojing Wang, Guosheng Pan, Yuan Yao, Hanghang Tong, Hongxia Yang, Feng Xu, Jian Lu: Bringing Order to Network Embedding: A Relative Ranking based Approach. CIKM 2020 [PDF]

  • Pei Yang, Qi Tan, Hanghang Tong, Jingrui He: Task-Adversarial Co-Generative Nets. KDD 2019. [PDF]

  • Yongkai Wu, Lu Zhang, Xintao Wu, Hanghang Tong: PC-Fairness: A Unified Framework for Measuring Causality-based Fairness. NeurIPS 2019. [PDF]

  • Rui Zhang, Hanghang Tong: Robust Principal Component Analysis with Adaptive Neighbors. NeurIPS 2019. [PDF]

  • Jian Kang, Hanghang Tong: N2N: Network Derivative Mining. CIKM 2019. [PDF]

  • Si Zhang, Hanghang Tong, Ross Maciejewski, Tina Eliassi-Rad: Multilevel Network Alignment. WWW 2019. [PDF]

  • Chen Chen, Ruiyue Peng, Lei Ying, Hanghang Tong: Network Connectivity Optimization: Fundamental Limits and Effective Algorithms. KDD 2018 [PDF]

  • Boxin Du, Hanghang Tong: FASTEN: Fast Sylvester Equation Solver for Graph Mining. KDD 2018. [PDF]

  • Liangyue Li, Hanghang Tong, Yong Wang, Conglei Shi, Nan Cao, Norbou Buchler: Is the Whole Greater Than the Sum of Its Parts? KDD 2017. [PDF] [Slides]

  • Jingwei Xu, Yuan Yao, Hanghang Tong, Xianping Tao, Jian Lu: HoORaYs: High-order Optimization of Rating Distance for Recommender Systems. KDD 2017. [PDF]

  • Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong, Hasan Davulcu, Jingrui He: A Local Algorithm for Structure-Preserving Graph Cut. KDD 2017. [PDF]

  • Boxin Du, Si Zhang, Nan Cao, Hanghang Tong: FIRST: Fast Interactive Attributed Subgraph Matching. KDD 2017. [PDF]

  • Chen Chen, Hanghang Tong, Lei Xie, Lei Ying, Qing He: FASCINATE: Fast Cross-Layer Dependency Inference on Multi-layered Networks. KDD 2016. [PDF] [Slides] (bests of kdd2016)

  • Liangyue Li, Yuan Yao, Jie Tang, Wei Fan, Hanghang Tong: QUINT: On Query-Specific Optimal Networks. KDD 2016. [PDF] [Slides]] [Code]

  • Si Zhang, Hanghang Tong: FINAL: Fast Attributed Network Alignment. KDD 2016. [PDF] [Slides] [Code]

  • Liangyue Li, Hanghang Tong: The Child is Father of the Man: Foresee the Success at the Early Stage. KDD 2015. [PDF] [Slides]

  • Yongjie Cai, Hanghang Tong, Wei Fan, Ping Ji, Qing He: Facets: Fast Comprehensive Mining of Coevolving High-order Time Series. KDD 2015. [PDF]

  • Jingchao Ni, Hanghang Tong, Wei Fan, Xiang Zhang: Flexible and Robust Multi-Network Clustering. KDD 2015. [PDF]

  • Jing Zhang, Jie Tang, Cong Ma, Hanghang Tong, Yu Jing, Juanzi Li: Panther: Fast Top-k Similarity Search on Large Networks. KDD 2015. [PDF]

  • Liangyue Li, Hanghang Tong, Nan Cao, Kate Ehrlich, Yu-Ru Lin, Norbou Buchler. Replacing the Irreplaceable: Fast Algorithm for Team Member Recommendation. WWW 2015. [PDF]

  • Yuan Yao, Hanghang Tong, Feng Xu, Jian Lu: Predicting long-term impact of CQA posts: a comprehensive viewpoint. KDD 2014. [PDF] [Slides] [Data and Code]

  • Jingchao Ni, Hanghang Tong, Wei Fan, Xiang Zhang: Inside the atoms: ranking on a network of networks. KDD 2014. [PDF]

  • Danai Koutra, Hanghang Tong, David Lubensky: BIG-ALIGN: Fast Bipartite Graph Alignment. ICDM 2013. [PDF] [slides]

  • Yuan Yao, Hanghang Tong, Xifeng Yan, Feng Xu, Jian Lu: MATRI: a multi-aspect and transitive trust inference model. WWW 2013. [PDF] [Slides]

  • Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos, Christos Faloutsos: Gelling, and melting, large graphs by edge manipulation. CIKM 2012. [PDF] [slides] (best paper award)

  • Hanghang Tong, Jingrui He, Zhen Wen, Ravi Konuru, Ching-Yung Lin: Diversified ranking on large graphs: an optimization viewpoint. KDD 2011 [PDF] [Slides]

  • U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, Christos Faloutsos: GBASE: a scalable and general graph management system. KDD 2011 [PDF]

  • Hanghang Tong, B. Aditya Prakash, Charalampos E. Tsourakakis, Tina Eliassi-Rad, Christos Faloutsos, Duen Horng Chau: On the Vulnerability of Large Graphs. ICDM 2010. [PDF] [Slides]

  • Kensuke Onuma, Hanghang Tong, Christos Faloutsos: TANGENT: a novel, 'Surprise me’, recommendation algorithm. KDD 2009. [PDF]

  • Hanghang Tong, Spiros Papadimitriou, Jimeng Sun, Philip S. Yu, Christos Faloutsos: Colibri: fast mining of large static and dynamic graphs. KDD 2008. [PDF] [Slides]

  • Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, Christos Faloutsos: Proximity Tracking on Time-Evolving Bipartite Graphs. SDM 2008. [PDF] [Slides] (best paper award)

  • Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007.[PDF] [Slides] [Code] [Video]

  • Hanghang Tong, Christos Faloutsos, Yehuda Koren: Fast direction-aware proximity for graph mining. KDD 2007. [PDF] [Slides] [Video] [Correction]

  • Hanghang Tong, Christos Faloutsos, Jia-Yu Pan: Fast Random Walk with Restart and Its Applications. ICDM 2006.[PDF] [Slides] [Code] (best research paper award)

  • Hanghang Tong, Christos Faloutsos: Center-piece subgraphs: problem definition and fast solutions. KDD 2006. [PDF] [Slides] [data and code]

  • Hanghang Tong, Jingrui He, Mingjing Li, Wei-Ying Ma, Changshui Zhang, HongJiang Zhang: A Unified Optimization Based Learning Method for Image Retrieval. CVPR 2005. [PDF]

  • Hanghang Tong, Mingjing Li, HongJiang Zhang, Changshui Zhang: Blur detection for digital images using wavelet transform. ICME 2004. [PDF]